Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +22 -20
- a2c-PandaReachDense-v2/policy.optimizer.pth +2 -2
- a2c-PandaReachDense-v2/policy.pth +2 -2
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -0.50 +/- 0.18
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:87a271e83278b74ba14baa256a16f8488eb2e87f96e5f9395aca1a96cbb0c06e
|
3 |
+
size 109555
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,14 +4,16 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc._abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
-
":serialized:": "
|
|
|
|
|
15 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
"optimizer_kwargs": {
|
17 |
"alpha": 0.99,
|
@@ -19,24 +21,24 @@
|
|
19 |
"weight_decay": 0
|
20 |
}
|
21 |
},
|
22 |
-
"num_timesteps":
|
23 |
-
"_total_timesteps":
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
-
"start_time":
|
28 |
-
"learning_rate": 0.
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
31 |
":type:": "<class 'function'>",
|
32 |
-
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
-
":serialized:": "
|
37 |
-
"achieved_goal": "[[
|
38 |
-
"desired_goal": "[[
|
39 |
-
"observation": "[[ 0.
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -44,30 +46,30 @@
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
-
"desired_goal": "[[
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
53 |
-
"use_sde":
|
54 |
"sde_sample_freq": -1,
|
55 |
"_current_progress_remaining": 0.0,
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
63 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
},
|
65 |
-
"_n_updates":
|
66 |
-
"n_steps":
|
67 |
"gamma": 0.99,
|
68 |
-
"gae_lambda":
|
69 |
"ent_coef": 0.0,
|
70 |
-
"vf_coef": 0.
|
71 |
"max_grad_norm": 0.5,
|
72 |
"normalize_advantage": false,
|
73 |
"observation_space": {
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f8712e83820>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f8712e7ffc0>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
13 |
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
15 |
+
"log_std_init": -2,
|
16 |
+
"ortho_init": false,
|
17 |
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
18 |
"optimizer_kwargs": {
|
19 |
"alpha": 0.99,
|
|
|
21 |
"weight_decay": 0
|
22 |
}
|
23 |
},
|
24 |
+
"num_timesteps": 1500000,
|
25 |
+
"_total_timesteps": 1500000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1681682065113437493,
|
30 |
+
"learning_rate": 0.00096,
|
31 |
"tensorboard_log": null,
|
32 |
"lr_schedule": {
|
33 |
":type:": "<class 'function'>",
|
34 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
35 |
},
|
36 |
"_last_obs": {
|
37 |
":type:": "<class 'collections.OrderedDict'>",
|
38 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAKifZPjpqeDulQxs/KifZPjpqeDulQxs/KifZPjpqeDulQxs/KifZPjpqeDulQxs/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAIwsEv5p2kj9Vtk4/tGuUv265NL8oy+W+YEioP3vXxb7oUhe9rfmvP693b78VXho/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAqJ9k+Omp4O6VDGz/SY4c9A6BIunuCYz0qJ9k+Omp4O6VDGz/SY4c9A6BIunuCYz0qJ9k+Omp4O6VDGz/SY4c9A6BIunuCYz0qJ9k+Omp4O6VDGz/SY4c9A6BIunuCYz2UaA5LBEsGhpRoEnSUUpR1Lg==",
|
39 |
+
"achieved_goal": "[[0.42412692 0.00379051 0.6065009 ]\n [0.42412692 0.00379051 0.6065009 ]\n [0.42412692 0.00379051 0.6065009 ]\n [0.42412692 0.00379051 0.6065009 ]]",
|
40 |
+
"desired_goal": "[[-0.51579493 1.1442444 0.80746967]\n [-1.1595368 -0.70595443 -0.44881558]\n [ 1.3147087 -0.3864096 -0.0369443 ]\n [ 1.374807 -0.93542 0.6029981 ]]",
|
41 |
+
"observation": "[[ 0.42412692 0.00379051 0.6065009 0.06610836 -0.00076532 0.05554436]\n [ 0.42412692 0.00379051 0.6065009 0.06610836 -0.00076532 0.05554436]\n [ 0.42412692 0.00379051 0.6065009 0.06610836 -0.00076532 0.05554436]\n [ 0.42412692 0.00379051 0.6065009 0.06610836 -0.00076532 0.05554436]]"
|
42 |
},
|
43 |
"_last_episode_starts": {
|
44 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
46 |
},
|
47 |
"_last_original_obs": {
|
48 |
":type:": "<class 'collections.OrderedDict'>",
|
49 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAHvuOPcjFjb2VaEw+fKENvBSKpb2rFj0+NyeqPT7ZTr1lltw99f0MPVNNNr0b5JE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
50 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
51 |
+
"desired_goal": "[[ 0.06981491 -0.06922489 0.1996177 ]\n [-0.00864446 -0.08082977 0.18465678]\n [ 0.08308261 -0.05050015 0.10770873]\n [ 0.03442188 -0.04450734 0.28494343]]",
|
52 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
53 |
},
|
54 |
"_episode_num": 0,
|
55 |
+
"use_sde": true,
|
56 |
"sde_sample_freq": -1,
|
57 |
"_current_progress_remaining": 0.0,
|
58 |
"_stats_window_size": 100,
|
59 |
"ep_info_buffer": {
|
60 |
":type:": "<class 'collections.deque'>",
|
61 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImpSCbi+p8r+UhpRSlIwBbJRLMowBdJRHQLGVODZDiOx1fZQoaAZoCWgPQwjKb9HJUiv0v5SGlFKUaBVLMmgWR0CxlQ2FFlTWdX2UKGgGaAloD0MInUfF/x1R9r+UhpRSlGgVSzJoFkdAsZTcUnG83HV9lChoBmgJaA9DCKFmSBXFa/e/lIaUUpRoFUsyaBZHQLGUsB+nZTR1fZQoaAZoCWgPQwgUI0vmWN7cv5SGlFKUaBVLMmgWR0CxljZV4oqkdX2UKGgGaAloD0MIQfLOoQyV9r+UhpRSlGgVSzJoFkdAsZYMScslLXV9lChoBmgJaA9DCL9EvHX+7e+/lIaUUpRoFUsyaBZHQLGV2065oXd1fZQoaAZoCWgPQwhaZhGKrSDwv5SGlFKUaBVLMmgWR0Cxla81TBIndX2UKGgGaAloD0MII6MDkrBv9b+UhpRSlGgVSzJoFkdAsZcSQ3gk1XV9lChoBmgJaA9DCEj43t+g/fW/lIaUUpRoFUsyaBZHQLGW52wmmch1fZQoaAZoCWgPQwhlxAWgUbrVv5SGlFKUaBVLMmgWR0CxlrZG4I8hdX2UKGgGaAloD0MITGw+rg2V6L+UhpRSlGgVSzJoFkdAsZaJ6AvtdHV9lChoBmgJaA9DCBdFD3wM1u+/lIaUUpRoFUsyaBZHQLGX+bd8ArB1fZQoaAZoCWgPQwhODp90IkHrv5SGlFKUaBVLMmgWR0Cxl87qQiiZdX2UKGgGaAloD0MIDJQUWADT77+UhpRSlGgVSzJoFkdAsZed5qubJHV9lChoBmgJaA9DCF+2nbZGhO2/lIaUUpRoFUsyaBZHQLGXcdSl3yJ1fZQoaAZoCWgPQwirQC0GD9Pgv5SGlFKUaBVLMmgWR0CxmK/JV81GdX2UKGgGaAloD0MI2V2gpMAC1b+UhpRSlGgVSzJoFkdAsZiEd4mkWXV9lChoBmgJaA9DCHSWWYRiK+i/lIaUUpRoFUsyaBZHQLGYUucc2it1fZQoaAZoCWgPQwj3kzE+zF7vv5SGlFKUaBVLMmgWR0CxmCY+8oQWdX2UKGgGaAloD0MIDcUdb/Jb07+UhpRSlGgVSzJoFkdAsZk2E384xXV9lChoBmgJaA9DCP91btqM0+W/lIaUUpRoFUsyaBZHQLGZCtnPE891fZQoaAZoCWgPQwgj3GRUGYb2v5SGlFKUaBVLMmgWR0CxmNlpwjt5dX2UKGgGaAloD0MIMo/8wcBz7b+UhpRSlGgVSzJoFkdAsZis4VARkHV9lChoBmgJaA9DCI0o7Q2+8PC/lIaUUpRoFUsyaBZHQLGZt2DQJHB1fZQoaAZoCWgPQwjEmV/NAYLpv5SGlFKUaBVLMmgWR0CxmYwzpHI7dX2UKGgGaAloD0MI8UknEkw16r+UhpRSlGgVSzJoFkdAsZlauJUHZHV9lChoBmgJaA9DCAsKgzKNpum/lIaUUpRoFUsyaBZHQLGZLjHn2Zl1fZQoaAZoCWgPQwhxdJXurjPkv5SGlFKUaBVLMmgWR0CxmkzY7JXAdX2UKGgGaAloD0MIjEl/L4WH67+UhpRSlGgVSzJoFkdAsZohqBVdX3V9lChoBmgJaA9DCI0JMZdUbeu/lIaUUpRoFUsyaBZHQLGZ8Dfm9xp1fZQoaAZoCWgPQwjbT8b4MHvuv5SGlFKUaBVLMmgWR0CxmcQ8nuzAdX2UKGgGaAloD0MIN6lorP2d5L+UhpRSlGgVSzJoFkdAsZrScUdq+XV9lChoBmgJaA9DCAHAsWfPZeK/lIaUUpRoFUsyaBZHQLGapyz5XU91fZQoaAZoCWgPQwgZxt0gWivhv5SGlFKUaBVLMmgWR0CxmnW6oVEedX2UKGgGaAloD0MIBf2FHjF67L+UhpRSlGgVSzJoFkdAsZpJIre67XV9lChoBmgJaA9DCOrPfqSIDNq/lIaUUpRoFUsyaBZHQLGbUwiaAnV1fZQoaAZoCWgPQwj/6Js0DYrxv5SGlFKUaBVLMmgWR0CxmyfSQYDUdX2UKGgGaAloD0MIaK8+Hvru6r+UhpRSlGgVSzJoFkdAsZr2WAwwkHV9lChoBmgJaA9DCE7RkVz+w/G/lIaUUpRoFUsyaBZHQLGaydfb9Ih1fZQoaAZoCWgPQwjSViWRfVD0v5SGlFKUaBVLMmgWR0Cxm9Y3zcyndX2UKGgGaAloD0MIrwlpjUEn6L+UhpRSlGgVSzJoFkdAsZurC2tuDXV9lChoBmgJaA9DCMVW0LTEyuO/lIaUUpRoFUsyaBZHQLGbeZmZmZp1fZQoaAZoCWgPQwi7Cik/qbbwv5SGlFKUaBVLMmgWR0Cxm00BXCCSdX2UKGgGaAloD0MIpvELryT587+UhpRSlGgVSzJoFkdAsZxRiBoVVXV9lChoBmgJaA9DCEBMwoU8gs+/lIaUUpRoFUsyaBZHQLGcJkVvddp1fZQoaAZoCWgPQwiRfvs6cE7nv5SGlFKUaBVLMmgWR0Cxm/S2hIvrdX2UKGgGaAloD0MIbAcj9gmg77+UhpRSlGgVSzJoFkdAsZvICyQgcXV9lChoBmgJaA9DCOF7f4P26t6/lIaUUpRoFUsyaBZHQLGczovi97F1fZQoaAZoCWgPQwil2NE41O/hv5SGlFKUaBVLMmgWR0CxnKNAxBVudX2UKGgGaAloD0MIHjS77q0I8b+UhpRSlGgVSzJoFkdAsZxxxWDHwXV9lChoBmgJaA9DCJilnZrLjfO/lIaUUpRoFUsyaBZHQLGcRSIP9UF1fZQoaAZoCWgPQwiki00rhUDXv5SGlFKUaBVLMmgWR0CxnVYre67NdX2UKGgGaAloD0MI06Opnsw/5L+UhpRSlGgVSzJoFkdAsZ0rBzmwJXV9lChoBmgJaA9DCJRqn47HDN+/lIaUUpRoFUsyaBZHQLGc+aJhvzh1fZQoaAZoCWgPQwiy8zY2O1Lpv5SGlFKUaBVLMmgWR0CxnM0kv9LpdX2UKGgGaAloD0MIY+3vbI9e87+UhpRSlGgVSzJoFkdAsZ3aw5eZ5XV9lChoBmgJaA9DCGBY/nxbsOi/lIaUUpRoFUsyaBZHQLGdr5qubI91fZQoaAZoCWgPQwiNRj6veOrlv5SGlFKUaBVLMmgWR0CxnX4kE9t/dX2UKGgGaAloD0MI5urHJvkR0L+UhpRSlGgVSzJoFkdAsZ1RktmL+HV9lChoBmgJaA9DCJUnEHaKVe+/lIaUUpRoFUsyaBZHQLGeWVVghKV1fZQoaAZoCWgPQwiOO6WD9X/Yv5SGlFKUaBVLMmgWR0Cxni4fCAMEdX2UKGgGaAloD0MICRoziXpB67+UhpRSlGgVSzJoFkdAsZ38k0JnhHV9lChoBmgJaA9DCKM6Hch6asu/lIaUUpRoFUsyaBZHQLGdz/UvwmV1fZQoaAZoCWgPQwinrnyW58Htv5SGlFKUaBVLMmgWR0CxnttiQT24dX2UKGgGaAloD0MImL7XEByX6r+UhpRSlGgVSzJoFkdAsZ6wM/hVEXV9lChoBmgJaA9DCKRt/InKBuq/lIaUUpRoFUsyaBZHQLGefrc0tRN1fZQoaAZoCWgPQwhtqYO8Hsznv5SGlFKUaBVLMmgWR0CxnlIkNWludX2UKGgGaAloD0MI9YQlHlC25L+UhpRSlGgVSzJoFkdAsZ9iKsMiKXV9lChoBmgJaA9DCNe/6zNn/ee/lIaUUpRoFUsyaBZHQLGfNwLE1l51fZQoaAZoCWgPQwhiaHVyhuLuv5SGlFKUaBVLMmgWR0CxnwWWyC4CdX2UKGgGaAloD0MIsVBrmnec2r+UhpRSlGgVSzJoFkdAsZ7ZDzAerHV9lChoBmgJaA9DCNV1qKYk6+e/lIaUUpRoFUsyaBZHQLGf5v+wTuh1fZQoaAZoCWgPQwgp6sw9JHzpv5SGlFKUaBVLMmgWR0Cxn7u3+dbxdX2UKGgGaAloD0MIjBNf7ShO4r+UhpRSlGgVSzJoFkdAsZ+KRvFWGXV9lChoBmgJaA9DCFG8ytqmeOG/lIaUUpRoFUsyaBZHQLGfXbD/EO11fZQoaAZoCWgPQwgZVYZxN4jnv5SGlFKUaBVLMmgWR0CxoGVjd56ddX2UKGgGaAloD0MI8gcDz72H1r+UhpRSlGgVSzJoFkdAsaA6J9AoonV9lChoBmgJaA9DCMGPatjvieO/lIaUUpRoFUsyaBZHQLGgCI5YHPh1fZQoaAZoCWgPQwg5nPnVHCDdv5SGlFKUaBVLMmgWR0Cxn9vhAGB4dX2UKGgGaAloD0MI4NVyZyYY17+UhpRSlGgVSzJoFkdAsaDkoNNJv3V9lChoBmgJaA9DCNriGp/J/uG/lIaUUpRoFUsyaBZHQLGguV81Gb11fZQoaAZoCWgPQwit+IbCZ2vtv5SGlFKUaBVLMmgWR0CxoIfZqVQidX2UKGgGaAloD0MIwFlKlpNQ5b+UhpRSlGgVSzJoFkdAsaBbUhFEzHV9lChoBmgJaA9DCGOYE7TJ4ee/lIaUUpRoFUsyaBZHQLGhY+H8CPp1fZQoaAZoCWgPQwgD0ZMyqaHTv5SGlFKUaBVLMmgWR0CxoTinpB5YdX2UKGgGaAloD0MIk4ychT3tzr+UhpRSlGgVSzJoFkdAsaEHQzDXOHV9lChoBmgJaA9DCJQ0f0xr0+q/lIaUUpRoFUsyaBZHQLGg2rHlwLp1fZQoaAZoCWgPQwgvM2yU9ZvFv5SGlFKUaBVLMmgWR0Cxoeq0lZ5idX2UKGgGaAloD0MIXtcv2A3b7r+UhpRSlGgVSzJoFkdAsaG/eSB9TnV9lChoBmgJaA9DCGaEtwchIO6/lIaUUpRoFUsyaBZHQLGhjmelKsd1fZQoaAZoCWgPQwjS/3ItWgDyv5SGlFKUaBVLMmgWR0CxoWHkLhJidX2UKGgGaAloD0MIFjPC24MQzL+UhpRSlGgVSzJoFkdAsaJqG5+Yt3V9lChoBmgJaA9DCIygMZOoV/G/lIaUUpRoFUsyaBZHQLGiPvr4WUN1fZQoaAZoCWgPQwhtqBjnb0LPv5SGlFKUaBVLMmgWR0Cxog13dKukdX2UKGgGaAloD0MIlgSoqWVr2r+UhpRSlGgVSzJoFkdAsaHgz3yqdnV9lChoBmgJaA9DCJaxoZv9gcy/lIaUUpRoFUsyaBZHQLGjPgeii7F1fZQoaAZoCWgPQwiAYmTJHEvnv5SGlFKUaBVLMmgWR0CxoxMv/R3NdX2UKGgGaAloD0MI3xrYKsHi2r+UhpRSlGgVSzJoFkdAsaLiJKraNHV9lChoBmgJaA9DCIc2ABsQId6/lIaUUpRoFUsyaBZHQLGitfVZs9B1ZS4="
|
62 |
},
|
63 |
"ep_success_buffer": {
|
64 |
":type:": "<class 'collections.deque'>",
|
65 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
66 |
},
|
67 |
+
"_n_updates": 46875,
|
68 |
+
"n_steps": 8,
|
69 |
"gamma": 0.99,
|
70 |
+
"gae_lambda": 0.9,
|
71 |
"ent_coef": 0.0,
|
72 |
+
"vf_coef": 0.4,
|
73 |
"max_grad_norm": 0.5,
|
74 |
"normalize_advantage": false,
|
75 |
"observation_space": {
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9ede72541987ce85661a6b86cbdc97c7e5a3e2a785edbd1b5c0da2285e3b2f9b
|
3 |
+
size 45438
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a7228aa19d52de74740a011a9ac977a233a00717d6e0ec8e04644888fe6b97d4
|
3 |
+
size 46718
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fb773bbc5e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb773bbe480>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681660720947593727, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAATtwQP84c4bwYSR8/TtwQP84c4bwYSR8/TtwQP84c4bwYSR8/TtwQP84c4bwYSR8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAu2abP+e9bD/sQLA/imC9vpfBHb+jUlC/YBeWPg6brT9qa4w/vB8SP0VTKT8JYn+/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABO3BA/zhzhvBhJHz9Ngqc8YKqxu6l8qTxO3BA/zhzhvBhJHz9Ngqc8YKqxu6l8qTxO3BA/zhzhvBhJHz9Ngqc8YKqxu6l8qTxO3BA/zhzhvBhJHz9Ngqc8YKqxu6l8qTyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.5658616 -0.02747956 0.6222091 ]\n [ 0.5658616 -0.02747956 0.6222091 ]\n [ 0.5658616 -0.02747956 0.6222091 ]\n [ 0.5658616 -0.02747956 0.6222091 ]]", "desired_goal": "[[ 1.2140726 0.9247727 1.3769813 ]\n [-0.36987716 -0.6162352 -0.81376094]\n [ 0.2931471 1.3562944 1.097028 ]\n [ 0.5707967 0.66142684 -0.99758965]]", "observation": "[[ 0.5658616 -0.02747956 0.6222091 0.02044787 -0.00542192 0.02068933]\n [ 0.5658616 -0.02747956 0.6222091 0.02044787 -0.00542192 0.02068933]\n [ 0.5658616 -0.02747956 0.6222091 0.02044787 -0.00542192 0.02068933]\n [ 0.5658616 -0.02747956 0.6222091 0.02044787 -0.00542192 0.02068933]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA8kGUvXZ4IDyGGno+9W6YvVY7Ib3s8ow8giYLPjUgKD21d5I+DqeJvW9Nh7380Pw9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.07239141 0.00979435 0.2442418 ]\n [-0.07443038 -0.03936323 0.01720568]\n [ 0.13588908 0.04104634 0.28606954]\n [-0.06721316 -0.06606566 0.12344548]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMINpVFYRc1EMCUhpRSlIwBbJRLMowBdJRHQKaWzJU5uIh1fZQoaAZoCWgPQwi/DwcJUd4NwJSGlFKUaBVLMmgWR0CmlnKyGBWgdX2UKGgGaAloD0MIwxA5fT3/DsCUhpRSlGgVSzJoFkdAppYa9wm3OXV9lChoBmgJaA9DCEwXYvVHOAvAlIaUUpRoFUsyaBZHQKaVw20AtFt1fZQoaAZoCWgPQwhruMg9Xb0IwJSGlFKUaBVLMmgWR0Cml7ArQPZqdX2UKGgGaAloD0MIqVDdXPw9EcCUhpRSlGgVSzJoFkdAppdWIO6NEXV9lChoBmgJaA9DCOAtkKD40Q3AlIaUUpRoFUsyaBZHQKaW/mmtQsR1fZQoaAZoCWgPQwgS3EjZIgkQwJSGlFKUaBVLMmgWR0CmlqcBltj1dX2UKGgGaAloD0MIc56xL9nIEMCUhpRSlGgVSzJoFkdAppicMLF4s3V9lChoBmgJaA9DCOYGQx1W2AzAlIaUUpRoFUsyaBZHQKaYQh37k4p1fZQoaAZoCWgPQwglsaTcfV4RwJSGlFKUaBVLMmgWR0Cml+pdSl3ydX2UKGgGaAloD0MInnsPlxzXDMCUhpRSlGgVSzJoFkdAppeSwKSgXnV9lChoBmgJaA9DCDMV4pF4eQ/AlIaUUpRoFUsyaBZHQKaZgmxdIG11fZQoaAZoCWgPQwjxoURLHm8PwJSGlFKUaBVLMmgWR0CmmSkYwZfldX2UKGgGaAloD0MIRuwTQDFyC8CUhpRSlGgVSzJoFkdAppjSPluFYnV9lChoBmgJaA9DCG0CDMufXxDAlIaUUpRoFUsyaBZHQKaYe0GeMAF1fZQoaAZoCWgPQwhsmKHxRGAQwJSGlFKUaBVLMmgWR0CmmnRTbWVedX2UKGgGaAloD0MIMPZefNHeDcCUhpRSlGgVSzJoFkdAppoaQFLWZ3V9lChoBmgJaA9DCOBkG7gDlRLAlIaUUpRoFUsyaBZHQKaZwotthux1fZQoaAZoCWgPQwivmBHeHiQNwJSGlFKUaBVLMmgWR0CmmWruIAOsdX2UKGgGaAloD0MIiGh0B7ETCcCUhpRSlGgVSzJoFkdApptapgkTpXV9lChoBmgJaA9DCEtXsI14ohLAlIaUUpRoFUsyaBZHQKabAJAMUh51fZQoaAZoCWgPQwhB740hAFgKwJSGlFKUaBVLMmgWR0Cmmqj8DSw4dX2UKGgGaAloD0MIe9tMhXhkD8CUhpRSlGgVSzJoFkdApppRcLSeAnV9lChoBmgJaA9DCO25TE2CFwvAlIaUUpRoFUsyaBZHQKacSrsByS51fZQoaAZoCWgPQwgtIorJGyALwJSGlFKUaBVLMmgWR0Cmm/DoQnQZdX2UKGgGaAloD0MIRiV1AprIB8CUhpRSlGgVSzJoFkdAppuZQSBbwHV9lChoBmgJaA9DCJ0SEJNwQQrAlIaUUpRoFUsyaBZHQKabQa9bor51fZQoaAZoCWgPQwgMPzifOhYTwJSGlFKUaBVLMmgWR0CmnTPoV2zOdX2UKGgGaAloD0MIyJQPQdWoCMCUhpRSlGgVSzJoFkdAppzZ2bG3nnV9lChoBmgJaA9DCMjuAiUFdgvAlIaUUpRoFUsyaBZHQKacgkO7QLN1fZQoaAZoCWgPQwjwi0tV2lIRwJSGlFKUaBVLMmgWR0CmnCrt/nW8dX2UKGgGaAloD0MIBfpEniT9CsCUhpRSlGgVSzJoFkdApp4V12aDw3V9lChoBmgJaA9DCJvG9lrQ2wrAlIaUUpRoFUsyaBZHQKadu9xIatN1fZQoaAZoCWgPQwhmiGNd3IYDwJSGlFKUaBVLMmgWR0CmnWSGBWgfdX2UKGgGaAloD0MIGjGzz2O0D8CUhpRSlGgVSzJoFkdApp0M47zTW3V9lChoBmgJaA9DCI6u0t119gfAlIaUUpRoFUsyaBZHQKae/d+G47R1fZQoaAZoCWgPQwhw6ZjzjJ0LwJSGlFKUaBVLMmgWR0CmnqRPfsNUdX2UKGgGaAloD0MI7iJMUS7NDsCUhpRSlGgVSzJoFkdApp5M8JUo8nV9lChoBmgJaA9DCIuLo3ITlQ/AlIaUUpRoFUsyaBZHQKad9b/Ot4l1fZQoaAZoCWgPQwgijQqcbEMNwJSGlFKUaBVLMmgWR0Cmn+kBsANodX2UKGgGaAloD0MI9z5VhQYCCsCUhpRSlGgVSzJoFkdApp+O5paibnV9lChoBmgJaA9DCEt2bATiVQ7AlIaUUpRoFUsyaBZHQKafNzshPj51fZQoaAZoCWgPQwgwEtpyLuUPwJSGlFKUaBVLMmgWR0Cmnt/foA4odX2UKGgGaAloD0MIJgD/lCrRDcCUhpRSlGgVSzJoFkdApqDepIczZnV9lChoBmgJaA9DCJ8DyxEyMBLAlIaUUpRoFUsyaBZHQKaghJxNqQB1fZQoaAZoCWgPQwgEHa1qSUcIwJSGlFKUaBVLMmgWR0CmoCzpxFRYdX2UKGgGaAloD0MIJ8Eb0qjgB8CUhpRSlGgVSzJoFkdApp/VXeWOZXV9lChoBmgJaA9DCFETfT7KaAfAlIaUUpRoFUsyaBZHQKahw77Kq4p1fZQoaAZoCWgPQwg/qIsUysIJwJSGlFKUaBVLMmgWR0CmoWmqYJE6dX2UKGgGaAloD0MIs3vysFC7E8CUhpRSlGgVSzJoFkdApqEScG1QZXV9lChoBmgJaA9DCENVTKWfkAvAlIaUUpRoFUsyaBZHQKagu40/GER1fZQoaAZoCWgPQwgb17/rMycIwJSGlFKUaBVLMmgWR0CmorcfV7QcdX2UKGgGaAloD0MINWH7yRi/C8CUhpRSlGgVSzJoFkdApqJdb5dnkHV9lChoBmgJaA9DCNI41O/Clg7AlIaUUpRoFUsyaBZHQKaiBfNzKcN1fZQoaAZoCWgPQwhz9s5oq/IQwJSGlFKUaBVLMmgWR0Cmoa7Gm1pkdX2UKGgGaAloD0MIvXDnwkhPCMCUhpRSlGgVSzJoFkdApqOd74SHunV9lChoBmgJaA9DCGx8JvvnSQrAlIaUUpRoFUsyaBZHQKajQ9hZyMl1fZQoaAZoCWgPQwizlZf8Tz4MwJSGlFKUaBVLMmgWR0CmouwjUutfdX2UKGgGaAloD0MIcCcR4V8kDsCUhpRSlGgVSzJoFkdApqKUi4axYHV9lChoBmgJaA9DCDYiGAeXzgbAlIaUUpRoFUsyaBZHQKak2PXkHUt1fZQoaAZoCWgPQwixFMlXAukNwJSGlFKUaBVLMmgWR0CmpH+98JD3dX2UKGgGaAloD0MIsYnMXOCCE8CUhpRSlGgVSzJoFkdApqQo0/GEPHV9lChoBmgJaA9DCC+nBMQk/AfAlIaUUpRoFUsyaBZHQKaj0bgjyFx1fZQoaAZoCWgPQwjDmzV4X7UFwJSGlFKUaBVLMmgWR0CmpjsfigkDdX2UKGgGaAloD0MI5l31gHlIEMCUhpRSlGgVSzJoFkdApqXhradtmHV9lChoBmgJaA9DCIbGE0GcRwvAlIaUUpRoFUsyaBZHQKaliuxKQJZ1fZQoaAZoCWgPQwiaYDjXMGMLwJSGlFKUaBVLMmgWR0CmpTP4ubqhdX2UKGgGaAloD0MIQbgCCvU0CcCUhpRSlGgVSzJoFkdApqfbfk3juXV9lChoBmgJaA9DCFmHo6t0NxDAlIaUUpRoFUsyaBZHQKanghIOH311fZQoaAZoCWgPQwjK3HwjugcMwJSGlFKUaBVLMmgWR0Cmpys0xdpqdX2UKGgGaAloD0MIHqm+84vyEMCUhpRSlGgVSzJoFkdApqbUabWmQHV9lChoBmgJaA9DCEj5SbVPJwPAlIaUUpRoFUsyaBZHQKapbJDE3sJ1fZQoaAZoCWgPQwh8YTJVMGoKwJSGlFKUaBVLMmgWR0CmqRNXxOLzdX2UKGgGaAloD0MIDHTtC+jlC8CUhpRSlGgVSzJoFkdApqi8XtShrXV9lChoBmgJaA9DCOyFAraDcQ3AlIaUUpRoFUsyaBZHQKaoZbeMyad1fZQoaAZoCWgPQwjhs3VwsPcOwJSGlFKUaBVLMmgWR0CmqvxHf/FSdX2UKGgGaAloD0MIoBov3STmBMCUhpRSlGgVSzJoFkdApqqjCP6sQ3V9lChoBmgJaA9DCN0J9l/nthTAlIaUUpRoFUsyaBZHQKaqS+tbLU11fZQoaAZoCWgPQwivJHmu7yMPwJSGlFKUaBVLMmgWR0CmqfUIsyzpdX2UKGgGaAloD0MIADyiQnVTBcCUhpRSlGgVSzJoFkdApqyDoUzsQnV9lChoBmgJaA9DCMo2cAfqVAfAlIaUUpRoFUsyaBZHQKasKidJ8OV1fZQoaAZoCWgPQwj9o2/SNMgKwJSGlFKUaBVLMmgWR0Cmq9M+mm+CdX2UKGgGaAloD0MIVMTpJFu9DMCUhpRSlGgVSzJoFkdApqt8TzundnV9lChoBmgJaA9DCPJDpREz+w/AlIaUUpRoFUsyaBZHQKauCUeMhox1fZQoaAZoCWgPQwicps8OuC4MwJSGlFKUaBVLMmgWR0Cmra+40/GEdX2UKGgGaAloD0MI0eejjLjABcCUhpRSlGgVSzJoFkdApq1YsiB5HHV9lChoBmgJaA9DCI9QM6SK4g/AlIaUUpRoFUsyaBZHQKatAksSTQp1fZQoaAZoCWgPQwimmIOgo/UJwJSGlFKUaBVLMmgWR0CmryKI7/4qdX2UKGgGaAloD0MIOIHptG7DEMCUhpRSlGgVSzJoFkdApq7IgHNX5nV9lChoBmgJaA9DCHHl7J3RVgnAlIaUUpRoFUsyaBZHQKaucNQTEit1fZQoaAZoCWgPQwj4GRcOhKQKwJSGlFKUaBVLMmgWR0CmrhlHavicdX2UKGgGaAloD0MIxQJf0a23CcCUhpRSlGgVSzJoFkdAprAEnXumanV9lChoBmgJaA9DCOdtbHakugvAlIaUUpRoFUsyaBZHQKavqow22oh1fZQoaAZoCWgPQwj600Z1OkAQwJSGlFKUaBVLMmgWR0Cmr1LaEi+tdX2UKGgGaAloD0MIGMxfIXOlDcCUhpRSlGgVSzJoFkdApq77PGACn3V9lChoBmgJaA9DCDoi36XUBQzAlIaUUpRoFUsyaBZHQKaw8Ly+YdB1fZQoaAZoCWgPQwgL7DGR0hwRwJSGlFKUaBVLMmgWR0CmsJahHskZdX2UKGgGaAloD0MIDOpb5nRZCMCUhpRSlGgVSzJoFkdAprA+4iHIqHV9lChoBmgJaA9DCNUFvMywUQPAlIaUUpRoFUsyaBZHQKav5zltCRh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f8712e83820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f8712e7ffc0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1500000, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681682065113437493, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAKifZPjpqeDulQxs/KifZPjpqeDulQxs/KifZPjpqeDulQxs/KifZPjpqeDulQxs/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAIwsEv5p2kj9Vtk4/tGuUv265NL8oy+W+YEioP3vXxb7oUhe9rfmvP693b78VXho/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAqJ9k+Omp4O6VDGz/SY4c9A6BIunuCYz0qJ9k+Omp4O6VDGz/SY4c9A6BIunuCYz0qJ9k+Omp4O6VDGz/SY4c9A6BIunuCYz0qJ9k+Omp4O6VDGz/SY4c9A6BIunuCYz2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.42412692 0.00379051 0.6065009 ]\n [0.42412692 0.00379051 0.6065009 ]\n [0.42412692 0.00379051 0.6065009 ]\n [0.42412692 0.00379051 0.6065009 ]]", "desired_goal": "[[-0.51579493 1.1442444 0.80746967]\n [-1.1595368 -0.70595443 -0.44881558]\n [ 1.3147087 -0.3864096 -0.0369443 ]\n [ 1.374807 -0.93542 0.6029981 ]]", "observation": "[[ 0.42412692 0.00379051 0.6065009 0.06610836 -0.00076532 0.05554436]\n [ 0.42412692 0.00379051 0.6065009 0.06610836 -0.00076532 0.05554436]\n [ 0.42412692 0.00379051 0.6065009 0.06610836 -0.00076532 0.05554436]\n [ 0.42412692 0.00379051 0.6065009 0.06610836 -0.00076532 0.05554436]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAHvuOPcjFjb2VaEw+fKENvBSKpb2rFj0+NyeqPT7ZTr1lltw99f0MPVNNNr0b5JE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.06981491 -0.06922489 0.1996177 ]\n [-0.00864446 -0.08082977 0.18465678]\n [ 0.08308261 -0.05050015 0.10770873]\n [ 0.03442188 -0.04450734 0.28494343]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImpSCbi+p8r+UhpRSlIwBbJRLMowBdJRHQLGVODZDiOx1fZQoaAZoCWgPQwjKb9HJUiv0v5SGlFKUaBVLMmgWR0CxlQ2FFlTWdX2UKGgGaAloD0MInUfF/x1R9r+UhpRSlGgVSzJoFkdAsZTcUnG83HV9lChoBmgJaA9DCKFmSBXFa/e/lIaUUpRoFUsyaBZHQLGUsB+nZTR1fZQoaAZoCWgPQwgUI0vmWN7cv5SGlFKUaBVLMmgWR0CxljZV4oqkdX2UKGgGaAloD0MIQfLOoQyV9r+UhpRSlGgVSzJoFkdAsZYMScslLXV9lChoBmgJaA9DCL9EvHX+7e+/lIaUUpRoFUsyaBZHQLGV2065oXd1fZQoaAZoCWgPQwhaZhGKrSDwv5SGlFKUaBVLMmgWR0Cxla81TBIndX2UKGgGaAloD0MII6MDkrBv9b+UhpRSlGgVSzJoFkdAsZcSQ3gk1XV9lChoBmgJaA9DCEj43t+g/fW/lIaUUpRoFUsyaBZHQLGW52wmmch1fZQoaAZoCWgPQwhlxAWgUbrVv5SGlFKUaBVLMmgWR0CxlrZG4I8hdX2UKGgGaAloD0MITGw+rg2V6L+UhpRSlGgVSzJoFkdAsZaJ6AvtdHV9lChoBmgJaA9DCBdFD3wM1u+/lIaUUpRoFUsyaBZHQLGX+bd8ArB1fZQoaAZoCWgPQwhODp90IkHrv5SGlFKUaBVLMmgWR0Cxl87qQiiZdX2UKGgGaAloD0MIDJQUWADT77+UhpRSlGgVSzJoFkdAsZed5qubJHV9lChoBmgJaA9DCF+2nbZGhO2/lIaUUpRoFUsyaBZHQLGXcdSl3yJ1fZQoaAZoCWgPQwirQC0GD9Pgv5SGlFKUaBVLMmgWR0CxmK/JV81GdX2UKGgGaAloD0MI2V2gpMAC1b+UhpRSlGgVSzJoFkdAsZiEd4mkWXV9lChoBmgJaA9DCHSWWYRiK+i/lIaUUpRoFUsyaBZHQLGYUucc2it1fZQoaAZoCWgPQwj3kzE+zF7vv5SGlFKUaBVLMmgWR0CxmCY+8oQWdX2UKGgGaAloD0MIDcUdb/Jb07+UhpRSlGgVSzJoFkdAsZk2E384xXV9lChoBmgJaA9DCP91btqM0+W/lIaUUpRoFUsyaBZHQLGZCtnPE891fZQoaAZoCWgPQwgj3GRUGYb2v5SGlFKUaBVLMmgWR0CxmNlpwjt5dX2UKGgGaAloD0MIMo/8wcBz7b+UhpRSlGgVSzJoFkdAsZis4VARkHV9lChoBmgJaA9DCI0o7Q2+8PC/lIaUUpRoFUsyaBZHQLGZt2DQJHB1fZQoaAZoCWgPQwjEmV/NAYLpv5SGlFKUaBVLMmgWR0CxmYwzpHI7dX2UKGgGaAloD0MI8UknEkw16r+UhpRSlGgVSzJoFkdAsZlauJUHZHV9lChoBmgJaA9DCAsKgzKNpum/lIaUUpRoFUsyaBZHQLGZLjHn2Zl1fZQoaAZoCWgPQwhxdJXurjPkv5SGlFKUaBVLMmgWR0CxmkzY7JXAdX2UKGgGaAloD0MIjEl/L4WH67+UhpRSlGgVSzJoFkdAsZohqBVdX3V9lChoBmgJaA9DCI0JMZdUbeu/lIaUUpRoFUsyaBZHQLGZ8Dfm9xp1fZQoaAZoCWgPQwjbT8b4MHvuv5SGlFKUaBVLMmgWR0CxmcQ8nuzAdX2UKGgGaAloD0MIN6lorP2d5L+UhpRSlGgVSzJoFkdAsZrScUdq+XV9lChoBmgJaA9DCAHAsWfPZeK/lIaUUpRoFUsyaBZHQLGapyz5XU91fZQoaAZoCWgPQwgZxt0gWivhv5SGlFKUaBVLMmgWR0CxmnW6oVEedX2UKGgGaAloD0MIBf2FHjF67L+UhpRSlGgVSzJoFkdAsZpJIre67XV9lChoBmgJaA9DCOrPfqSIDNq/lIaUUpRoFUsyaBZHQLGbUwiaAnV1fZQoaAZoCWgPQwj/6Js0DYrxv5SGlFKUaBVLMmgWR0CxmyfSQYDUdX2UKGgGaAloD0MIaK8+Hvru6r+UhpRSlGgVSzJoFkdAsZr2WAwwkHV9lChoBmgJaA9DCE7RkVz+w/G/lIaUUpRoFUsyaBZHQLGaydfb9Ih1fZQoaAZoCWgPQwjSViWRfVD0v5SGlFKUaBVLMmgWR0Cxm9Y3zcyndX2UKGgGaAloD0MIrwlpjUEn6L+UhpRSlGgVSzJoFkdAsZurC2tuDXV9lChoBmgJaA9DCMVW0LTEyuO/lIaUUpRoFUsyaBZHQLGbeZmZmZp1fZQoaAZoCWgPQwi7Cik/qbbwv5SGlFKUaBVLMmgWR0Cxm00BXCCSdX2UKGgGaAloD0MIpvELryT587+UhpRSlGgVSzJoFkdAsZxRiBoVVXV9lChoBmgJaA9DCEBMwoU8gs+/lIaUUpRoFUsyaBZHQLGcJkVvddp1fZQoaAZoCWgPQwiRfvs6cE7nv5SGlFKUaBVLMmgWR0Cxm/S2hIvrdX2UKGgGaAloD0MIbAcj9gmg77+UhpRSlGgVSzJoFkdAsZvICyQgcXV9lChoBmgJaA9DCOF7f4P26t6/lIaUUpRoFUsyaBZHQLGczovi97F1fZQoaAZoCWgPQwil2NE41O/hv5SGlFKUaBVLMmgWR0CxnKNAxBVudX2UKGgGaAloD0MIHjS77q0I8b+UhpRSlGgVSzJoFkdAsZxxxWDHwXV9lChoBmgJaA9DCJilnZrLjfO/lIaUUpRoFUsyaBZHQLGcRSIP9UF1fZQoaAZoCWgPQwiki00rhUDXv5SGlFKUaBVLMmgWR0CxnVYre67NdX2UKGgGaAloD0MI06Opnsw/5L+UhpRSlGgVSzJoFkdAsZ0rBzmwJXV9lChoBmgJaA9DCJRqn47HDN+/lIaUUpRoFUsyaBZHQLGc+aJhvzh1fZQoaAZoCWgPQwiy8zY2O1Lpv5SGlFKUaBVLMmgWR0CxnM0kv9LpdX2UKGgGaAloD0MIY+3vbI9e87+UhpRSlGgVSzJoFkdAsZ3aw5eZ5XV9lChoBmgJaA9DCGBY/nxbsOi/lIaUUpRoFUsyaBZHQLGdr5qubI91fZQoaAZoCWgPQwiNRj6veOrlv5SGlFKUaBVLMmgWR0CxnX4kE9t/dX2UKGgGaAloD0MI5urHJvkR0L+UhpRSlGgVSzJoFkdAsZ1RktmL+HV9lChoBmgJaA9DCJUnEHaKVe+/lIaUUpRoFUsyaBZHQLGeWVVghKV1fZQoaAZoCWgPQwiOO6WD9X/Yv5SGlFKUaBVLMmgWR0Cxni4fCAMEdX2UKGgGaAloD0MICRoziXpB67+UhpRSlGgVSzJoFkdAsZ38k0JnhHV9lChoBmgJaA9DCKM6Hch6asu/lIaUUpRoFUsyaBZHQLGdz/UvwmV1fZQoaAZoCWgPQwinrnyW58Htv5SGlFKUaBVLMmgWR0CxnttiQT24dX2UKGgGaAloD0MImL7XEByX6r+UhpRSlGgVSzJoFkdAsZ6wM/hVEXV9lChoBmgJaA9DCKRt/InKBuq/lIaUUpRoFUsyaBZHQLGefrc0tRN1fZQoaAZoCWgPQwhtqYO8Hsznv5SGlFKUaBVLMmgWR0CxnlIkNWludX2UKGgGaAloD0MI9YQlHlC25L+UhpRSlGgVSzJoFkdAsZ9iKsMiKXV9lChoBmgJaA9DCNe/6zNn/ee/lIaUUpRoFUsyaBZHQLGfNwLE1l51fZQoaAZoCWgPQwhiaHVyhuLuv5SGlFKUaBVLMmgWR0CxnwWWyC4CdX2UKGgGaAloD0MIsVBrmnec2r+UhpRSlGgVSzJoFkdAsZ7ZDzAerHV9lChoBmgJaA9DCNV1qKYk6+e/lIaUUpRoFUsyaBZHQLGf5v+wTuh1fZQoaAZoCWgPQwgp6sw9JHzpv5SGlFKUaBVLMmgWR0Cxn7u3+dbxdX2UKGgGaAloD0MIjBNf7ShO4r+UhpRSlGgVSzJoFkdAsZ+KRvFWGXV9lChoBmgJaA9DCFG8ytqmeOG/lIaUUpRoFUsyaBZHQLGfXbD/EO11fZQoaAZoCWgPQwgZVYZxN4jnv5SGlFKUaBVLMmgWR0CxoGVjd56ddX2UKGgGaAloD0MI8gcDz72H1r+UhpRSlGgVSzJoFkdAsaA6J9AoonV9lChoBmgJaA9DCMGPatjvieO/lIaUUpRoFUsyaBZHQLGgCI5YHPh1fZQoaAZoCWgPQwg5nPnVHCDdv5SGlFKUaBVLMmgWR0Cxn9vhAGB4dX2UKGgGaAloD0MI4NVyZyYY17+UhpRSlGgVSzJoFkdAsaDkoNNJv3V9lChoBmgJaA9DCNriGp/J/uG/lIaUUpRoFUsyaBZHQLGguV81Gb11fZQoaAZoCWgPQwit+IbCZ2vtv5SGlFKUaBVLMmgWR0CxoIfZqVQidX2UKGgGaAloD0MIwFlKlpNQ5b+UhpRSlGgVSzJoFkdAsaBbUhFEzHV9lChoBmgJaA9DCGOYE7TJ4ee/lIaUUpRoFUsyaBZHQLGhY+H8CPp1fZQoaAZoCWgPQwgD0ZMyqaHTv5SGlFKUaBVLMmgWR0CxoTinpB5YdX2UKGgGaAloD0MIk4ychT3tzr+UhpRSlGgVSzJoFkdAsaEHQzDXOHV9lChoBmgJaA9DCJQ0f0xr0+q/lIaUUpRoFUsyaBZHQLGg2rHlwLp1fZQoaAZoCWgPQwgvM2yU9ZvFv5SGlFKUaBVLMmgWR0Cxoeq0lZ5idX2UKGgGaAloD0MIXtcv2A3b7r+UhpRSlGgVSzJoFkdAsaG/eSB9TnV9lChoBmgJaA9DCGaEtwchIO6/lIaUUpRoFUsyaBZHQLGhjmelKsd1fZQoaAZoCWgPQwjS/3ItWgDyv5SGlFKUaBVLMmgWR0CxoWHkLhJidX2UKGgGaAloD0MIFjPC24MQzL+UhpRSlGgVSzJoFkdAsaJqG5+Yt3V9lChoBmgJaA9DCIygMZOoV/G/lIaUUpRoFUsyaBZHQLGiPvr4WUN1fZQoaAZoCWgPQwhtqBjnb0LPv5SGlFKUaBVLMmgWR0Cxog13dKukdX2UKGgGaAloD0MIlgSoqWVr2r+UhpRSlGgVSzJoFkdAsaHgz3yqdnV9lChoBmgJaA9DCJaxoZv9gcy/lIaUUpRoFUsyaBZHQLGjPgeii7F1fZQoaAZoCWgPQwiAYmTJHEvnv5SGlFKUaBVLMmgWR0CxoxMv/R3NdX2UKGgGaAloD0MI3xrYKsHi2r+UhpRSlGgVSzJoFkdAsaLiJKraNHV9lChoBmgJaA9DCIc2ABsQId6/lIaUUpRoFUsyaBZHQLGitfVZs9B1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 46875, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -0.49694217747892255, "std_reward": 0.1784574817964695, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-16T23:09:57.269026"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2464
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a07cd2b1165b0566d6900e78c430ae849a08ca72cc1e529e7de7c47c49d61d2
|
3 |
size 2464
|