distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6681
  • Accuracy: 0.79

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.217 1.0 113 2.1052 0.56
1.6052 2.0 226 1.5168 0.64
1.3013 3.0 339 1.1829 0.72
1.0992 4.0 452 1.0341 0.71
0.8897 5.0 565 0.9080 0.72
0.5886 6.0 678 0.8139 0.75
0.6883 7.0 791 0.6996 0.8
0.3935 8.0 904 0.6771 0.78
0.4424 9.0 1017 0.6573 0.82
0.2705 10.0 1130 0.6986 0.79
0.1556 11.0 1243 0.6894 0.79
0.136 12.0 1356 0.6990 0.81
0.1151 13.0 1469 0.6639 0.81
0.1337 14.0 1582 0.6649 0.81
0.1949 15.0 1695 0.6681 0.79

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.0
Downloads last month
17
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Barani1-t/distilhubert-finetuned-gtzan

Finetuned
(414)
this model

Dataset used to train Barani1-t/distilhubert-finetuned-gtzan

Evaluation results