hubert-base-ls960-finetuned-gtzan

This model is a fine-tuned version of facebook/hubert-base-ls960 on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0283
  • Accuracy: 0.83

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Accuracy Validation Loss
2.2494 1.0 113 0.36 2.1568
1.7795 2.0 226 0.38 1.7904
1.5798 3.0 339 0.5 1.6144
1.6354 4.0 452 0.66 1.2584
0.9675 5.0 565 0.64 1.1453
0.995 6.0 678 0.67 0.9740
1.2052 7.0 791 0.68 1.0552
0.7028 8.0 904 0.74 0.8980
0.7472 9.0 1017 0.72 0.9431
0.3181 10.0 1130 0.75 0.8750
0.3948 11.0 1243 0.73 1.0047
0.3507 12.0 1356 0.81 0.8054
0.1785 13.0 1469 0.84 0.7866
0.2453 14.0 1582 0.82 0.8960
0.2832 15.0 1695 0.81 1.0770
0.2132 16.0 1808 0.82 0.9359
0.1398 17.0 1921 0.81 1.0800
0.292 18.0 2034 0.84 0.9867
0.0181 19.0 2147 0.82 1.0585
0.0399 20.0 2260 1.0283 0.83

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Barani1-t/hubert-base-ls960

Finetuned
(75)
this model

Dataset used to train Barani1-t/hubert-base-ls960

Evaluation results