Baselhany's picture
Training finished
68b5109 verified
|
raw
history blame
2.49 kB
metadata
library_name: transformers
language:
  - ar
license: apache-2.0
base_model: openai/whisper-base
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: Whisper base AR - BH
    results: []

Whisper base AR - BH

This model is a fine-tuned version of openai/whisper-base on the quran-ayat-speech-to-text-segments dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0231
  • Wer: 0.2331

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.017 1.3333 100 0.0233 0.2610
0.0148 2.6667 200 0.0216 0.2495
0.0094 4.0 300 0.0204 0.2438
0.0048 5.3333 400 0.0203 0.2409
0.0027 6.6667 500 0.0206 0.2421
0.0017 8.0 600 0.0213 0.2491
0.0007 9.3333 700 0.0218 0.2384
0.0005 10.6667 800 0.0221 0.2368
0.0003 12.0 900 0.0224 0.2372
0.0003 13.3333 1000 0.0226 0.2347
0.0003 14.6667 1100 0.0228 0.2327
0.0002 16.0 1200 0.0229 0.2335
0.0002 17.3333 1300 0.0230 0.2331
0.0002 18.6667 1400 0.0231 0.2331
0.0002 20.0 1500 0.0231 0.2335

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.4.0
  • Datasets 3.1.0
  • Tokenizers 0.20.3