Baselhany's picture
Training finished
31acaeb verified
metadata
library_name: transformers
language:
  - ar
license: apache-2.0
base_model: openai/whisper-base
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: Whisper base AR - BH
    results: []

Whisper base AR - BH

This model is a fine-tuned version of openai/whisper-base on the quran-ayat-speech-to-text-segments dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0253
  • Wer: 0.1830

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0158 1.0 100 0.0179 0.2185
0.0131 2.0 200 0.0161 0.2154
0.0105 3.0 300 0.0148 0.2059
0.0066 4.0 400 0.0144 0.2011
0.0046 5.0 500 0.0145 0.2011
0.0021 6.0 600 0.0150 0.1985
0.0012 7.0 700 0.0154 0.1945
0.0004 8.0 800 0.0161 0.1890
0.0002 9.0 900 0.0169 0.1894
0.0001 10.0 1000 0.0177 0.1899
0.0 11.0 1100 0.0185 0.1842
0.0 12.0 1200 0.0193 0.1850
0.0 13.0 1300 0.0203 0.1839
0.0 14.0 1400 0.0214 0.1844
0.0 15.0 1500 0.0224 0.1804
0.0 16.0 1600 0.0234 0.1833
0.0 17.0 1700 0.0243 0.1818
0.0 18.0 1800 0.0253 0.1830
0.0 19.0 1900 0.0259 0.1854
0.0 20.0 2000 0.0261 0.1854

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.4.0
  • Datasets 3.1.0
  • Tokenizers 0.20.3