llama-1b-yelp-5
This model is a fine-tuned version of meta-llama/Llama-3.2-1B-Instruct on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.2241
- Accuracy: 0.4791
- Precision: 0.4724
- Recall: 0.4769
- F1: 0.4736
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
No log | 0.2559 | 100 | 1.6861 | 0.3415 | 0.3301 | 0.3398 | 0.3321 |
No log | 0.5118 | 200 | 1.4513 | 0.3999 | 0.4029 | 0.3957 | 0.3946 |
No log | 0.7678 | 300 | 1.3685 | 0.4308 | 0.4189 | 0.4296 | 0.4209 |
No log | 1.0230 | 400 | 1.3152 | 0.4474 | 0.4399 | 0.4453 | 0.4403 |
6.034 | 1.2790 | 500 | 1.2959 | 0.4547 | 0.4483 | 0.4532 | 0.4471 |
6.034 | 1.5349 | 600 | 1.2663 | 0.4616 | 0.4559 | 0.4593 | 0.4566 |
6.034 | 1.7908 | 700 | 1.2542 | 0.4674 | 0.4630 | 0.4647 | 0.4626 |
6.034 | 2.0461 | 800 | 1.2405 | 0.4729 | 0.4673 | 0.4712 | 0.4684 |
6.034 | 2.3020 | 900 | 1.2371 | 0.4783 | 0.4763 | 0.4777 | 0.4753 |
4.7846 | 2.5579 | 1000 | 1.2266 | 0.4814 | 0.4741 | 0.4803 | 0.4762 |
4.7846 | 2.8138 | 1100 | 1.2241 | 0.4791 | 0.4724 | 0.4769 | 0.4736 |
Framework versions
- PEFT 0.14.0
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 13
Model tree for BayanDuygu/llama-1b-yelp-5
Base model
meta-llama/Llama-3.2-1B-Instruct