Model description
This is a gpt2 model trained on 142 612 different Lithuanian Wikipedia articles + 11 405 articles taken from delfi.lt, ve.lt and respublika.lt news portals.
Intended uses & limitations
This is a model I trained when writing my bachelors. You can use it anywhere you want.
Training results
Model reached 36.83% accuracy with training data and 37.02% with validation data
Framework versions
Transformers 3.5.0 TensorFlow 2.4.1 Tokenizers 0.12.1 Torch 1.4.0
How to use it:
import tensorflow as tf
from transformers import WEIGHTS_NAME, CONFIG_NAME
from transformers import GPT2Config, TFGPT2LMHeadModel, GPT2Tokenizer
import os
output_dir = '...' #local file or link to this page
tokenizer = GPT2Tokenizer.from_pretrained(output_dir)
model = TFGPT2LMHeadModel.from_pretrained(output_dir)
text = "Siekdamas"
# encoding the input text
input_ids = tokenizer.encode(text, return_tensors='tf')
# getting out output
beam_outputs = model.generate(
input_ids,
max_length = 150,
num_beams = 5,
temperature = 0.7,
no_repeat_ngram_size=2,
num_return_sequences=5
)
print(tokenizer.decode(beam_outputs[0]))
- Downloads last month
- 5