Whisper Small Sanskrit_4 - Bidit Sadhukhan

This model is a fine-tuned version of openai/whisper-small on the load_data dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1193
  • Wer: 27.9415

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2.5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 44
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 10000

Training results

Training Loss Epoch Step Validation Loss Wer
0.1168 0.12 500 0.2069 47.5067
0.0854 0.23 1000 0.1774 43.4951
0.0766 0.35 1500 0.1659 40.7385
0.0631 0.47 2000 0.1644 39.0968
0.0629 0.58 2500 0.1379 34.7266
0.0763 0.7 3000 0.1401 35.1916
0.0515 0.82 3500 0.1343 34.8386
0.0457 0.93 4000 0.1185 31.6114
0.0302 1.05 4500 0.1315 33.1074
0.0276 1.17 5000 0.1245 31.1127
0.0234 1.28 5500 0.1265 30.9166
0.0266 1.4 6000 0.1289 30.6029
0.0186 1.52 6500 0.1230 30.1658
0.0284 1.63 7000 0.1157 29.2414
0.0182 1.75 7500 0.1125 27.6165
0.024 1.87 8000 0.1143 28.5970
0.0214 1.98 8500 0.1097 27.2972
0.0055 2.1 9000 0.1152 28.2497
0.0069 2.21 9500 0.1210 27.3364
0.0101 2.33 10000 0.1193 27.9415

Framework versions

  • Transformers 4.35.0.dev0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.14.0
Downloads last month
19
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Bidwill/whisper-small-sanskrit

Finetuned
(2225)
this model

Spaces using Bidwill/whisper-small-sanskrit 2

Evaluation results