BilalMuftuoglu's picture
End of training
618ae6d verified
|
raw
history blame
5.55 kB
metadata
license: apache-2.0
base_model: facebook/deit-base-distilled-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: deit-base-distilled-patch16-224-hasta-65-fold5
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5555555555555556

deit-base-distilled-patch16-224-hasta-65-fold5

This model is a fine-tuned version of facebook/deit-base-distilled-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0163
  • Accuracy: 0.5556

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.5714 1 1.1751 0.3889
No log 1.7143 3 1.0341 0.4722
No log 2.8571 5 1.3059 0.2778
No log 4.0 7 1.3255 0.2778
No log 4.5714 8 1.1834 0.2778
1.1839 5.7143 10 1.0357 0.5278
1.1839 6.8571 12 1.0608 0.3889
1.1839 8.0 14 1.2060 0.3333
1.1839 8.5714 15 1.1938 0.3889
1.1839 9.7143 17 1.0825 0.5
1.1839 10.8571 19 1.1488 0.3889
0.9707 12.0 21 1.1268 0.3889
0.9707 12.5714 22 1.0563 0.5
0.9707 13.7143 24 1.0570 0.5278
0.9707 14.8571 26 1.1166 0.4167
0.9707 16.0 28 1.0609 0.4444
0.9707 16.5714 29 1.0379 0.4722
0.8668 17.7143 31 1.0610 0.4444
0.8668 18.8571 33 1.1811 0.4167
0.8668 20.0 35 1.1028 0.4444
0.8668 20.5714 36 1.0950 0.4444
0.8668 21.7143 38 1.1424 0.4722
0.6889 22.8571 40 1.3027 0.4167
0.6889 24.0 42 1.2030 0.4167
0.6889 24.5714 43 1.2148 0.4167
0.6889 25.7143 45 1.3066 0.4167
0.6889 26.8571 47 1.3881 0.3611
0.6889 28.0 49 1.2566 0.4444
0.576 28.5714 50 1.1891 0.4444
0.576 29.7143 52 1.1638 0.4167
0.576 30.8571 54 1.2530 0.4167
0.576 32.0 56 1.1383 0.5
0.576 32.5714 57 1.0968 0.5
0.576 33.7143 59 1.0163 0.5556
0.4773 34.8571 61 1.1107 0.5
0.4773 36.0 63 1.1341 0.5
0.4773 36.5714 64 1.1152 0.5278
0.4773 37.7143 66 1.1158 0.5556
0.4773 38.8571 68 1.1628 0.4722
0.4186 40.0 70 1.2305 0.4444
0.4186 40.5714 71 1.2181 0.4722
0.4186 41.7143 73 1.2164 0.5
0.4186 42.8571 75 1.2225 0.5
0.4186 44.0 77 1.2298 0.5
0.4186 44.5714 78 1.2651 0.4722
0.3318 45.7143 80 1.3628 0.4167
0.3318 46.8571 82 1.3817 0.4167
0.3318 48.0 84 1.3594 0.4167
0.3318 48.5714 85 1.3553 0.4444
0.3318 49.7143 87 1.3548 0.4167
0.3318 50.8571 89 1.4113 0.4167
0.344 52.0 91 1.4433 0.4167
0.344 52.5714 92 1.4449 0.4167
0.344 53.7143 94 1.4514 0.4167
0.344 54.8571 96 1.4685 0.4167
0.344 56.0 98 1.4734 0.4167
0.344 56.5714 99 1.4747 0.4167
0.3305 57.1429 100 1.4732 0.4167

Framework versions

  • Transformers 4.41.0
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1