vit-base-plankton / README.md
Binou's picture
🍻 cheers
3416ab1
metadata
license: other
base_model: apple/mobilevit-xx-small
tags:
  - image-classification
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vit-base-plankton
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: plankton_fairscope
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8050847457627118

vit-base-plankton

This model is a fine-tuned version of apple/mobilevit-xx-small on the plankton_fairscope dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7642
  • Accuracy: 0.8051

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.5476 0.52 100 1.2745 0.7419
1.0997 1.04 200 0.8653 0.7842
0.9498 1.56 300 0.7642 0.8051

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0