short_name
This model is a fine-tuned version of Bisher/wav2vec2_ASV_deepfake_audio_detection on an unknown dataset. It achieves the following results on the evaluation set:
- eval_loss: 0.5552
- eval_accuracy: 0.895
- eval_precision: 0.9061
- eval_recall: 0.895
- eval_f1: 0.8500
- eval_TP: 1
- eval_TN: 178
- eval_FN: 21
- eval_FP: 0
- eval_EER: 0.2727
- eval_min_tDCF: 0.0281
- eval_auc_roc: 0.7296
- eval_runtime: 66.7052
- eval_samples_per_second: 2.998
- eval_steps_per_second: 2.998
- epoch: 0.04
- step: 1
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
- mixed_precision_training: Native AMP
Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0+cpu
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 1
Model tree for Bisher/short_name
Base model
facebook/wav2vec2-base