short_name

This model is a fine-tuned version of Bisher/wav2vec2_ASV_deepfake_audio_detection on an unknown dataset. It achieves the following results on the evaluation set:

  • eval_loss: 0.5552
  • eval_accuracy: 0.895
  • eval_precision: 0.9061
  • eval_recall: 0.895
  • eval_f1: 0.8500
  • eval_TP: 1
  • eval_TN: 178
  • eval_FN: 21
  • eval_FP: 0
  • eval_EER: 0.2727
  • eval_min_tDCF: 0.0281
  • eval_auc_roc: 0.7296
  • eval_runtime: 66.7052
  • eval_samples_per_second: 2.998
  • eval_steps_per_second: 2.998
  • epoch: 0.04
  • step: 1

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0+cpu
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
1
Safetensors
Model size
94.6M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for Bisher/short_name

Finetuned
(4)
this model