File size: 1,496 Bytes
a8eab90 8d61b73 a8eab90 8d61b73 a8eab90 8d61b73 a8eab90 8d61b73 a8eab90 8d61b73 a8eab90 8d61b73 a8eab90 ddd21c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
import base64
import json
import os
from io import StringIO
from typing import Dict, Any
import torch
from transformers import pipeline
class EndpointHandler:
def __init__(self, asr_model_path: str = "./whisper-large-v2"):
device = 0 if torch.cuda.is_available() else -1
print("Using device:", device)
# Create an ASR pipeline using the model located in the specified directory
self.asr_pipeline = pipeline(
"automatic-speech-recognition",
model = asr_model_path,
device = device
)
def __call__(self, data: Dict[str, Any]) -> str:
if "audio_data" not in data.keys():
raise Exception("Request must contain a top-level key named 'audio_data'")
# Get the audio data from the input
audio_data = data["audio_data"]
options = data["options"]
# Decode the binary audio data if it's provided as a base64 string
if isinstance(audio_data, str):
audio_data = base64.b64decode(audio_data)
# Process the audio data with the ASR pipeline
transcription = self.asr_pipeline(
audio_data,
return_timestamps = True,
chunk_length_s = 30,
batch_size = 8,
max_new_tokens = 10000,
generate_kwargs = options
)
# Convert the transcription to JSON
result = StringIO()
json.dump(transcription, result)
return result.getvalue()
|