BleachNick's picture
Update README.md
ca5a95d
|
raw
history blame
4.08 kB
metadata
license: mit
language:
  - en
library_name: transformers

Model Card for Model ID

This modelcard aims to be a base template for new models. It has been generated using this raw template.

Model Details

MMICL(Multi-Modal In-Context Learning) is a multimodal vision-language model that incorporates blip2/instrcutblip. It has the ability to analyze and understand multiple images, as well as follow instructions.

Model Description

MMICL outperforms the VL model of the same size and performs exceptionally well on complex visual reasoning datasets. Till 21st Aug. 2023, it achieves **state-of-the-art ** performance on both multimodal task leaderboards and a wide range of vision-language tasks. Furthermore, it showcases new capabilities in video understanding and multimodal in-context learning (M-ICL).

  • Capability of multiple images refering and reasoning

  • Manually constructed In-context instruction tuning dataset

  • Till 21st Aug. 2023 1st on MME, 1st on MMBench

  • Visual Encoder: VIT-L from CLIP/ ViT-G/14 from EVA-CLIP

  • Pre-trained LLM: FlanT5-XL/ FlanT5-XXL/ Vicuna-7B/ Vicuna-13B

How to Get Started with the Model

# For T5 based model
from model.instructblip import InstructBlipConfig, InstructBlipModel, InstructBlipPreTrainedModel,InstructBlipForConditionalGeneration,InstructBlipProcessor
import datasets
import json
import transformers
from PIL import Image
import torch
from model.blip2 import Blip2Processor,Blip2ForConditionalGeneration
from model.blip2 import Blip2Config
model_type="instructblip"
model_ckpt="BleachNick/MMICL-Instructblip-T5-xxl"

if 'blip2' in model_type:
    model = Blip2ForConditionalGeneration.from_pretrained(
            model_ckpt,
            config=config).to('cuda:0',dtype=torch.bfloat16)
elif 'instructblip' in model_type:
    model = InstructBlipForConditionalGeneration.from_pretrained(
        model_ckpt,
        config=config).to('cuda:0',dtype=torch.bfloat16) 


sp = ["图"]+[f"<image{i}>" for i in range(20)]

processor = InstructBlipProcessor.from_pretrained(
    model_ckpt
)
# processor = Blip2Processor.from_pretrained(
#     model_ckpt
# )

sp = sp+processor.tokenizer.additional_special_tokens[len(sp):]
processor.tokenizer.add_special_tokens({'additional_special_tokens':sp})


prompt = ['Use the image 0: <image0>图,image 1: <image1>图 and image 2: <image2>图 as a visual aid to help you calculate the equation accurately. image 0 is 2+1=3.\nimage 1 is 5+6=11.\nimage 2 is"']

prompt = " ".join(prompt)

inputs = processor(images=images, text=prompt, return_tensors="pt")

inputs['pixel_values'] = inputs['pixel_values'].to(torch.bfloat16)
inputs['img_mask'] = torch.tensor([[1 for i in range(len(images))]])
inputs['pixel_values'] = inputs['pixel_values'].unsqueeze(0)

inputs = inputs.to('cuda:0')
outputs = model.generate(
        pixel_values = inputs['pixel_values'],
        input_ids = inputs['input_ids'],
        attention_mask = inputs['attention_mask'],
        img_mask = inputs['img_mask']
)
generated_text = processor.batch_decode(outputs, skip_special_tokens=True)[0].strip()
print(generated_text)

Training Hyperparameters

  • Training regime: [fp32, bf16 mixed precision, bf16 non-mixed precision]