Bmalmotairy's picture
End of training
ddfb200
metadata
base_model: aubmindlab/bert-base-arabertv02-twitter
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: arabert-weakly-supervised-arabic-propaganda
    results: []

arabert-weakly-supervised-arabic-propaganda

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02-twitter on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3223
  • Accuracy: 0.8389
  • Precision: 0.7865
  • Recall: 0.7764
  • F1: 0.7814

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.3758 1.0 2272 0.3615 0.8193 0.7950 0.6909 0.7393
0.3421 2.0 4544 0.3431 0.8285 0.7523 0.8016 0.7762
0.3447 3.0 6816 0.3389 0.8305 0.7933 0.7345 0.7628
0.3229 4.0 9088 0.3297 0.8352 0.7725 0.7877 0.7800
0.3176 5.0 11360 0.3223 0.8389 0.7865 0.7764 0.7814

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.6
  • Tokenizers 0.14.1