|
--- |
|
license: cc-by-nc-sa-4.0 |
|
--- |
|
<p align="center"> |
|
<img src="https://github.com/lbh0830/TW-Hokkien-LLM/blob/main/pics/logo.jpg?raw=true" alt="Taigi-llama-logo" width="350"> |
|
</p> |
|
|
|
# Model Card for Taigi-Llama-2-13B |
|
The Taigi-Llama-2 series are built based on the Traditional Chinese version of the LLaMA-2 model. We conducted continued pre-training on web-scraped data in Taiwanese Hokkien, including Hanzi, POJ, and Hanlo, totaling around 78MB. |
|
|
|
For more details, please refer to our [GitHub repository](https://github.com/lbh0830/TW-Hokkien-LLM/tree/main) and the paper: [Enhancing Taiwanese Hokkien Dual Translation by Exploring and Standardizing of Four Writing Systems](https://arxiv.org/abs/2403.12024) |
|
|
|
Explore other models and datasets in the [Taiwanese Hokkien LLM collection](https://huggingface.co/collections/Bohanlu/taiwanese-hokkien-llm-6614ba7456e6789bc2f10ca0). |
|
|
|
## Model description |
|
|
|
- **Usage:** This model can be used for causal language modeling tasks in Taiwanese Hokkien. It is also suitable for further fine-tuning on specific datasets for downstream tasks. |
|
- **Language(s) (NLP):** The primary language is Taiwanese Hokkien (Hanzi and POJ). The model also retains capabilities in English and Mandarin Chinese due to prior pre-training. |
|
- **Input:** Text |
|
- **Output:** Text |
|
- **Model Size:** 13B parameters |
|
|
|
## Usage Example |
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextGenerationPipeline |
|
import torch |
|
import accelerate |
|
|
|
def get_pipeline(path:str, tokenizer:AutoTokenizer, accelerator:accelerate.Accelerator) -> TextGenerationPipeline: |
|
model = AutoModelForCausalLM.from_pretrained( |
|
path, torch_dtype=torch.float16, device_map='auto', trust_remote_code=True) |
|
|
|
terminators = [tokenizer.eos_token_id, tokenizer.pad_token_id] |
|
|
|
pipeline = TextGenerationPipeline(model = model, tokenizer = tokenizer, num_workers=accelerator.state.num_processes*4, pad_token_id=tokenizer.pad_token_id, eos_token_id=terminators) |
|
|
|
return pipeline |
|
|
|
model_dir = "Bohanlu/Taigi-Llama-2-7B" # or Bohanlu/Taigi-Llama-2-13B for the 13B model |
|
tokenizer = AutoTokenizer.from_pretrained(model_dir, use_fast=False) |
|
|
|
accelerator = accelerate.Accelerator() |
|
pipe = get_pipeline(model_dir, tokenizer, accelerator) |
|
|
|
# Few-shot示例:問答 |
|
qa_prompt = """Example 1: |
|
問題:台北101有偌懸? |
|
答案:台北101的高度是五百空八公尺。 |
|
|
|
Example 2: |
|
問題:台灣上長的溪仔是佗一條? |
|
答案:台灣上長的溪仔是濁水溪,規个長度有百八公里遐爾長。 |
|
|
|
Example 3: |
|
問題:臺灣上懸的山是啥物? |
|
答案:""" |
|
|
|
print(pipe(qa_prompt, return_full_text=False)) |
|
# Output: [{'generated_text': '臺灣上懸的山是玉山,海拔三千九百五十二公尺。'}] |
|
``` |
|
|
|
## Citation |
|
|
|
If you find the resources in the Taiwanese Hokkien LLM collection useful in your work, please cite it using the following reference: |
|
|
|
``` |
|
@misc{lu2024enhancing, |
|
title={Enhancing Taiwanese Hokkien Dual Translation by Exploring and Standardizing of Four Writing Systems}, |
|
author={Bo-Han Lu and Yi-Hsuan Lin and En-Shiun Annie Lee and Richard Tzong-Han Tsai}, |
|
year={2024}, |
|
eprint={2403.12024}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|