DreadMix / README.md
BoltMonkey's picture
Adding Evaluation Results (#1)
6e5662e verified
---
tags:
- merge
- mergekit
- lazymergekit
- DreadPoor/Eunoia_Vespera-8B-LINEAR
- DreadPoor/Promissum_Mane-8B-LINEAR-lorablated
base_model:
- DreadPoor/Eunoia_Vespera-8B-LINEAR
- DreadPoor/Promissum_Mane-8B-LINEAR-lorablated
model-index:
- name: DreadMix
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 70.95
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BoltMonkey/DreadMix
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 34.85
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BoltMonkey/DreadMix
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 13.75
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BoltMonkey/DreadMix
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 6.6
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BoltMonkey/DreadMix
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 13.62
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BoltMonkey/DreadMix
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 31.0
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BoltMonkey/DreadMix
name: Open LLM Leaderboard
---
# DreadMix
DreadMix is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [DreadPoor/Eunoia_Vespera-8B-LINEAR](https://huggingface.co/DreadPoor/Eunoia_Vespera-8B-LINEAR)
* [DreadPoor/Promissum_Mane-8B-LINEAR-lorablated](https://huggingface.co/DreadPoor/Promissum_Mane-8B-LINEAR-lorablated)
## 🧩 Configuration
```yaml
models:
- model: DreadPoor/Aurora_faustus-8B-LORABLATED_ALT
- model: DreadPoor/Eunoia_Vespera-8B-LINEAR
parameters:
density: 0.53
weight: 0.55
- model: DreadPoor/Promissum_Mane-8B-LINEAR-lorablated
parameters:
density: 0.53
weight: 0.45
merge_method: dare_ties
base_model: DreadPoor/Aurora_faustus-8B-LORABLATED_ALT
parameters:
int8_mask: true
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "BoltMonkey/DreadMix"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_BoltMonkey__DreadMix)
| Metric |Value|
|-------------------|----:|
|Avg. |28.46|
|IFEval (0-Shot) |70.95|
|BBH (3-Shot) |34.85|
|MATH Lvl 5 (4-Shot)|13.75|
|GPQA (0-shot) | 6.60|
|MuSR (0-shot) |13.62|
|MMLU-PRO (5-shot) |31.00|