metadata
base_model:
- mlabonne/NeuralDaredevil-8B-abliterated
- grimjim/Llama-3.1-SuperNova-Lite-lorabilterated-8B
tags:
- merge
- mergekit
- lazymergekit
- mlabonne/NeuralDaredevil-8B-abliterated
- grimjim/Llama-3.1-SuperNova-Lite-lorabilterated-8B
NeuralDaredevil-SuperNova-Lite-7B-DARETIES-ablorabliterated
NeuralDaredevil-SuperNova-Lite-7B-DARETIES-ablorabliterated is a merge of the following models using LazyMergekit:
🧩 Configuration
models:
- model: NousResearch/Meta-Llama-3.1-8B-Instruct
- model: mlabonne/NeuralDaredevil-8B-abliterated
parameters:
density: 0.53
weight: 0.55
- model: grimjim/Llama-3.1-SuperNova-Lite-lorabilterated-8B
parameters:
density: 0.53
weight: 0.45
merge_method: dare_ties
base_model: NousResearch/Meta-Llama-3.1-8B-Instruct
parameters:
int8_mask: true
dtype: bfloat16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "BoltMonkey/NeuralDaredevil-SuperNova-Lite-7B-DARETIES-ablorabliterated"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])