BoltMonkey's picture
Update README.md
d739f50 verified
|
raw
history blame
3.16 kB
metadata
library_name: transformers
base_model:
  - mlabonne/NeuralDaredevil-8B-abliterated
  - grimjim/Llama-3.1-SuperNova-Lite-lorabilterated-8B
tags:
  - merge
  - mergekit
  - lazymergekit
  - mlabonne/NeuralDaredevil-8B-abliterated
  - grimjim/Llama-3.1-SuperNova-Lite-lorabilterated-8B
license: llama3.1
pipeline_tag: text-generation

NeuralDaredevil-SuperNova-Lite-7B-DARETIES-abliterated

NeuralDaredevil-SuperNova-Lite-7B-DARETIES-abliterated is a merge of the following models using LazyMergekit:

Quantised versions of this model are available in GGUF format from here Or use the following direct links:

open-llm-leaderboard results

Average IFEval BBH MATH Lvl 5 GPQA MUSR MMLU-PRO
27.5 79.99 30.76 10.27 4.14 9.47 30.37 🤗 Open LLM Leaderboard

🧩 Configuration

models:
  - model: NousResearch/Meta-Llama-3.1-8B-Instruct
  - model: mlabonne/NeuralDaredevil-8B-abliterated
    parameters:
      density: 0.53
      weight: 0.55
  - model: grimjim/Llama-3.1-SuperNova-Lite-lorabilterated-8B
    parameters:
      density: 0.53
      weight: 0.45
merge_method: dare_ties
base_model: NousResearch/Meta-Llama-3.1-8B-Instruct
parameters:
  int8_mask: true
dtype: bfloat16

💻 Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "BoltMonkey/NeuralDaredevil-SuperNova-Lite-7B-DARETIES-ablorabliterated"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])