Initial commit
Browse files- README.md +1 -1
- a2c-AntBulletEnv-v0.zip +1 -1
- a2c-AntBulletEnv-v0/data +17 -17
- a2c-AntBulletEnv-v0/policy.optimizer.pth +1 -1
- a2c-AntBulletEnv-v0/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: AntBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: AntBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 1833.20 +/- 84.60
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-AntBulletEnv-v0.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 129231
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e5136b21bf24032b32f77b0c1c6244490fbdc00b7d4634929ef5a315d0358498
|
3 |
size 129231
|
a2c-AntBulletEnv-v0/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {
|
@@ -37,7 +37,7 @@
|
|
37 |
"_num_timesteps_at_start": 0,
|
38 |
"seed": null,
|
39 |
"action_noise": null,
|
40 |
-
"start_time":
|
41 |
"learning_rate": 0.00096,
|
42 |
"tensorboard_log": null,
|
43 |
"lr_schedule": {
|
@@ -46,7 +46,7 @@
|
|
46 |
},
|
47 |
"_last_obs": {
|
48 |
":type:": "<class 'numpy.ndarray'>",
|
49 |
-
":serialized:": "
|
50 |
},
|
51 |
"_last_episode_starts": {
|
52 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -54,7 +54,7 @@
|
|
54 |
},
|
55 |
"_last_original_obs": {
|
56 |
":type:": "<class 'numpy.ndarray'>",
|
57 |
-
":serialized:": "
|
58 |
},
|
59 |
"_episode_num": 0,
|
60 |
"use_sde": true,
|
@@ -63,7 +63,7 @@
|
|
63 |
"_stats_window_size": 100,
|
64 |
"ep_info_buffer": {
|
65 |
":type:": "<class 'collections.deque'>",
|
66 |
-
":serialized:": "
|
67 |
},
|
68 |
"ep_success_buffer": {
|
69 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fa0e4c8dee0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa0e4c8df70>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa0e4c91040>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa0e4c910d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fa0e4c91160>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fa0e4c911f0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa0e4c91280>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa0e4c91310>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fa0e4c913a0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa0e4c91430>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa0e4c914c0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa0e4c91550>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fa0e4c8fc40>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {
|
|
|
37 |
"_num_timesteps_at_start": 0,
|
38 |
"seed": null,
|
39 |
"action_noise": null,
|
40 |
+
"start_time": 1681332330210229281,
|
41 |
"learning_rate": 0.00096,
|
42 |
"tensorboard_log": null,
|
43 |
"lr_schedule": {
|
|
|
46 |
},
|
47 |
"_last_obs": {
|
48 |
":type:": "<class 'numpy.ndarray'>",
|
49 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOlotL1fGra+dd1wPuWPoT/RmI+/AAJSP1RuZT9XcoW/1tq+v2JoSj+HOoA/KMK+P8gmJD7A+Io++JsGP1wvL734PM0/Qx/BOX7X4D7ILWnAUr6nv29cWb9Vswc/hj6jPyievL+bgZs+INy8v2VKpz/r/qQ/qCxDv2xgbL6K2Vo/8fsUwM7saD9kED6/k6WBv4wSoT8JBq685d37PiNPY7+UlFG/Lpzsv3AqAD+6Iuq+ZsWSv1B2yL8VlrW+JJEAP+xhpL6cLLU9A2rCPs6eYr8aui0/m4GbPhqBLT/s30O/5JeEPwAEVD3fywk/+CcWP/8QVb/+P1G/DuDEvko70L7euJo/rRwBPT4FIz56Mkq/CxXTvi0Ctb9UC6G9apHPv+wguL9H8Q08mvjAvYbnPD9oFyg/Om7zvcfs874ef8K/GrotP5uBmz4agS0/7N9Dv1B5ur0F9wW/cZGNPTyvnT9bP3S/HueDP++rSz/YYni/AfLCv5Bohj8L5y0/hq36P4DgmD3gUPw/OjEFPxGlT75hdMA//L7RvDdWmj610WG/EBamv6L8sD9GZwo/05DRPyievL+bgZs+GoEtP2VKpz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
50 |
},
|
51 |
"_last_episode_starts": {
|
52 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
54 |
},
|
55 |
"_last_original_obs": {
|
56 |
":type:": "<class 'numpy.ndarray'>",
|
57 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADZVlE2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA/5x/vQAAAADX1Oy/AAAAADOxBT4AAAAAx6f4PwAAAADDiDa9AAAAABCP4T8AAAAAy5ynPAAAAABNCu+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAn5uENgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOFc370AAAAAbhIBwAAAAACOsmI9AAAAAIbJ3j8AAAAAfC8WvQAAAABhhdk/AAAAAPEDGL0AAAAAlrzovwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEwapLUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBKw4Q9AAAAAJBu5r8AAAAAK5aWPQAAAACZGOY/AAAAAE3Dur0AAAAA24TwPwAAAACd3O+8AAAAAB0d7L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABs5cQ1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA9BzOPQAAAACkbd+/AAAAAOC8mz0AAAAA6aDrPwAAAABAm649AAAAAIV+5j8AAAAAHBmnOgAAAADzVei/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
58 |
},
|
59 |
"_episode_num": 0,
|
60 |
"use_sde": true,
|
|
|
63 |
"_stats_window_size": 100,
|
64 |
"ep_info_buffer": {
|
65 |
":type:": "<class 'collections.deque'>",
|
66 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJLUx3GGVRmMAWyUTegDjAF0lEdAqpiTzbvgFXV9lChoBkdAkp9nKwIMSmgHTegDaAhHQKqfFdEb5uZ1fZQoaAZHQJE77114gRtoB03oA2gIR0Cqobm1pj+adX2UKGgGR0CSG5C6H0sfaAdN6ANoCEdAqqM7muDBdnV9lChoBkdAkg5YA0bcXWgHTegDaAhHQKqmZNt65Xl1fZQoaAZHQJWWXUqhDgJoB03oA2gIR0Cqq9kJKJ2udX2UKGgGR0CUdEYmLLpzaAdN6ANoCEdAqq5r8WKuS3V9lChoBkdAlTa/oePq92gHTegDaAhHQKqwQqoZQ551fZQoaAZHQJLk+MVDa5BoB03oA2gIR0CqtN7j94u9dX2UKGgGR0CWnu/6O5rhaAdN6ANoCEdAqrveFHrhSHV9lChoBkdAlfZpOJtSAGgHTegDaAhHQKq+glTFVDN1fZQoaAZHQJSOzHPu5SZoB03oA2gIR0CqwCKAJ9iMdX2UKGgGR0CXB5ZRsMy8aAdN6ANoCEdAqsNZLbpNbnV9lChoBkdAmRrvD50r9WgHTegDaAhHQKrIuO+ZgG91fZQoaAZHQJTlkhwEQoVoB03oA2gIR0Cqy1fCqIacdX2UKGgGR0CXt2Z39rGjaAdN6ANoCEdAqszVliBoVXV9lChoBkdAkcJtxyXD32gHTegDaAhHQKrQ7T6SDAd1fZQoaAZHQJQ+5kUbkwNoB03oA2gIR0Cq2NXocJdCdX2UKGgGR0CV5KfkWAPNaAdN6ANoCEdAqttrTQVsUXV9lChoBkdAlJiMFMZgomgHTegDaAhHQKrc6wdKdx11fZQoaAZHQJCAT1nM+vBoB03oA2gIR0Cq4A2sA/9pdX2UKGgGR0CSznVbA1vVaAdN6ANoCEdAquVajrRjSXV9lChoBkdAlOvnq/ub7WgHTegDaAhHQKrn6814xDd1fZQoaAZHQJSL8czZYgdoB03oA2gIR0Cq6WdUS7GvdX2UKGgGR0CR6psUZeiSaAdN6ANoCEdAquzts54nnnV9lChoBkdAkNyzwH7gsWgHTegDaAhHQKr081Nxlxx1fZQoaAZHQJFhUybhFVloB03oA2gIR0Cq+CCjk+5fdX2UKGgGR0CRCZlQuVX4aAdN6ANoCEdAqvmlpsXSB3V9lChoBkdAkHslf7aZhWgHTegDaAhHQKr824rBj4J1fZQoaAZHQJFsXh73PAxoB03oA2gIR0CrAktZvDP4dX2UKGgGR0CTEmbX6InCaAdN6ANoCEdAqwTidUbT+nV9lChoBkdAlLVrvb48EGgHTegDaAhHQKsGX8/D+BJ1fZQoaAZHQJWrEEPlMh5oB03oA2gIR0CrCYHDrJKbdX2UKGgGR0CXxKy+pOvdaAdN6ANoCEdAqxDqVdHDrXV9lChoBkdAmC6+IhyKemgHTegDaAhHQKsU/XPqs2h1fZQoaAZHQJcwak8A7xNoB03oA2gIR0CrFn1BMSK4dX2UKGgGR0CYftbc45tFaAdN6ANoCEdAqxmxqCYkV3V9lChoBkdAl5OdX5nDi2gHTegDaAhHQKsfCqRU3n91fZQoaAZHQJh5ceq7yx1oB03oA2gIR0CrIaVV5rxidX2UKGgGR0CarblFtsN2aAdN6ANoCEdAqyM/8dgfEHV9lChoBkdAmgxIWYWtVGgHTegDaAhHQKsnC6NEPUd1fZQoaAZHQJYWMVpKzzFoB03oA2gIR0CrLgP2f02+dX2UKGgGR0CYKIU+s5n2aAdN6ANoCEdAqzIWzD4xlHV9lChoBkdAlXoiFPBSDWgHTegDaAhHQKs0BFMqSYB1fZQoaAZHQJiqMaXKKYRoB03oA2gIR0CrNzgBtDUmdX2UKGgGR0CblYpxFRYSaAdN6ANoCEdAqzzC9CeEqXV9lChoBkdAnIgZDmbLEGgHTegDaAhHQKs/ZrHlwLp1fZQoaAZHQJ40efseGPBoB03oA2gIR0CrQOBuO0b+dX2UKGgGR0CbvEHJtBOYaAdN6ANoCEdAq0QMTBZZCHV9lChoBkdAnkbcEmplz2gHTegDaAhHQKtKh9+gDih1fZQoaAZHQJ39TCfpUxVoB03oA2gIR0CrTn6+FlCkdX2UKGgGR0CbP7F85S3taAdN6ANoCEdAq1Di35N47nV9lChoBkdAngU5IQOFxmgHTegDaAhHQKtUTP/JeVt1fZQoaAZHQJ5f1+d9UjtoB03oA2gIR0CrWZpZOi35dX2UKGgGR0CfVEv0RODbaAdN6ANoCEdAq1w2NJe3QXV9lChoBkdAnFyp0bLlm2gHTegDaAhHQKtdq5fdAPd1fZQoaAZHQKAtxhXKbKBoB03oA2gIR0CrYMY95hScdX2UKGgGR0CgN7c/2TPjaAdN6ANoCEdAq2Y8yFfzBnV9lChoBkdAoTIJfnfVJGgHTegDaAhHQKtp66xPfsN1fZQoaAZHQKFlT5eqrBFoB03oA2gIR0CrbDj2alUIdX2UKGgGR0CgoaKNZNfxaAdN6ANoCEdAq3CrCaZx73V9lChoBkdAoQrsjAzpHWgHTegDaAhHQKt2DvrGBFx1fZQoaAZHQKCWvItDlYFoB03oA2gIR0CreNyx7iQ1dX2UKGgGR0CgTiaIeo1laAdN6ANoCEdAq3pYFV1fV3V9lChoBkdAntJy+Yc/+2gHTegDaAhHQKt9d+Haewt1fZQoaAZHQJut9gv114hoB03oA2gIR0Crgr3N9ph4dX2UKGgGR0Cfu7oUzsQeaAdN6ANoCEdAq4XnEKmbb3V9lChoBkdAnyxI82aUimgHTegDaAhHQKuICEQoTf11fZQoaAZHQKAlVkJ8fFJoB03oA2gIR0CrjNfDUExJdX2UKGgGR0CgMv7hFVkuaAdN6ANoCEdAq5KsNx2jf3V9lChoBkdAnsHg7T2FnWgHTegDaAhHQKuVO2pAD7t1fZQoaAZHQJ+/NkJ8fFJoB03oA2gIR0CrlreWv8qGdX2UKGgGR0CgV/iX6ZYxaAdN6ANoCEdAq5nkCV8kU3V9lChoBkdAnxK8TWXkYGgHTegDaAhHQKufLEjxCpp1fZQoaAZHQJ5q57CzkZJoB03oA2gIR0Croc2ZiNKidX2UKGgGR0CfPCIf8uSPaAdN6ANoCEdAq6O5rnDBM3V9lChoBkdAn4X8S9M9KWgHTegDaAhHQKuoSTMaCMB1fZQoaAZHQKAdCdzXBgxoB03oA2gIR0CrryyyUs4DdX2UKGgGR0CetTcjJMg2aAdN6ANoCEdAq7G8+iaiK3V9lChoBkdAnzVWGATZhGgHTegDaAhHQKuzVbJOnEV1fZQoaAZHQJ+386zVtoBoB03oA2gIR0Crtn9o371qdX2UKGgGR0CgDPLDye7MaAdN6ANoCEdAq7vFe0G/vnV9lChoBkdAoFTqQq7ROWgHTegDaAhHQKu+YuK4x1x1fZQoaAZHQKAXN+RYA81oB03oA2gIR0Crv98YIjW1dX2UKGgGR0CfG+/+bVjJaAdN6ANoCEdAq8P58a4tpXV9lChoBkdAnty8H8jzI2gHTegDaAhHQKvLozEaVD91fZQoaAZHQKBTImBvrGBoB03oA2gIR0CrziyM1jy4dX2UKGgGR0CgEUbD/EOzaAdN6ANoCEdAq8+ixu89OnV9lChoBkdAoDXLgGbCrWgHTegDaAhHQKvSylzEJjV1fZQoaAZHQJ3irYNAkcFoB03oA2gIR0Cr1/7m+0w8dX2UKGgGR0CfOabjtG/faAdN6ANoCEdAq9qWtdRiw3V9lChoBkdAoDGxlpXZG2gHTegDaAhHQKvcEe4Cp3p1fZQoaAZHQKBL7hE0BOpoB03oA2gIR0Cr31Zzo2XLdX2UKGgGR0CgdjBfKISEaAdN6ANoCEdAq+csmBvrGHV9lChoBkdAnxbVF6RhdGgHTegDaAhHQKvqdW8yvcJ1fZQoaAZHQKAXbps41gpoB03oA2gIR0Cr6/liSaE0dX2UKGgGR0Cfh/wqRU3oaAdN6ANoCEdAq+8fX05EMXV9lChoBkdAoGWzDbah6GgHTegDaAhHQKv0h/d69kB1fZQoaAZHQJ9IEEvCdjJoB03oA2gIR0Cr9xW1twaSdX2UKGgGR0CewgIWP91maAdN6ANoCEdAq/iOOjqOcXVlLg=="
|
67 |
},
|
68 |
"ep_success_buffer": {
|
69 |
":type:": "<class 'collections.deque'>",
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 56190
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:94603f7488335003cb7033f4de9f45a067b804b776aafe0289246b971d85f8da
|
3 |
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 56894
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cd996d5179b142948c26b3e2ac74fee6d896e9d31c3b81cf4d1a315cb5aee45a
|
3 |
size 56894
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd0991d9160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd0991d91f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd0991d9280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd0991d9310>", "_build": "<function ActorCriticPolicy._build at 0x7fd0991d93a0>", "forward": "<function ActorCriticPolicy.forward at 0x7fd0991d9430>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd0991d94c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd0991d9550>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd0991d95e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd0991d9670>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd0991d9700>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd0991d9790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd0991e0440>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681323387601333219, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAKCzuT9utEG+/MITP5XfhT/t+8I/ZRkQPvTePD9EF7y/ahxAP9u8YLx9onA/317svrF0mj4q0/4/d28gv/xpm75bQaA+1DHkP0EiqT5dpfe+pGMfP/NjYj9a8SA/ik8fQD0shL/vQBg/lQrnPiRik7+003w/HusXvflfDT/mVZ4/Pjp1vQpxKD+XBDK+Cn0av39PTj9sM05AxZeDP8ARpj79naO/RhvcPjGizb6C0jDAsDt5vcxKXj28e7y+3zTnP/pfJr+lxf0/813kvSjQ2b756nc/RDjXv5UK5z4kYpO/6QygPworzr4lDBU/qHvpv8AYt75s/w0/SP3SP9APLr+N1ju/ORIkwA2uJ71dtBnA8SuZv3GRYjzV4jHAX3VHPSGlvj8v5D67yYRTPou2D72weTu/cVZFPRN2LD4J02E+PSyEv+9AGD+VCuc+7FReP0LiO75LfxG/OeEPP4Jqtb6vnB4/VTkwPxCXuD7dqyk/0u8KP5Hf7D1+y/O9KNtjvPcWWL95S1Q/Ry4cv49YwL44op0/uECwP2JcOT5i1k++OkEwv9G9zT79F5q+35FpvD0shL/vQBg/0tMNwOxUXj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAMAIY1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdkKAPQAAAAAP/f6/AAAAAKMLFz0AAAAAGK37PwAAAAA2oto8AAAAAPy86z8AAAAAUmclvQAAAAAtdwDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABmdJNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMnR670AAAAA/nzbvwAAAADaO1I9AAAAAMPk4j8AAAAAkl+nvAAAAAD2PuY/AAAAAJOivTwAAAAAhWXhvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALl3YLUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAFrTQ9AAAAALre/L8AAAAADwhKPAAAAACTjOs/AAAAAJWpCT0AAAAApIbdPwAAAABINBk9AAAAAN058r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABFsN42AACAPwAAAAAAAAAAAAAAAAAAAAAAAACALYLRvQAAAAD4WPm/AAAAAO2MhD0AAAAAZcPyPwAAAAAnzcE9AAAAAELM7T8AAAAAhrG0vAAAAACbP+C/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJjqBbSqlxiMAWyUTegDjAF0lEdAqUIlzfaYeHV9lChoBkdAnm0uM2m52GgHTegDaAhHQKlFccEvCdl1fZQoaAZHQJm/0pVjqfRoB03oA2gIR0CpSR5sbedkdX2UKGgGR0CcKrdgv115aAdN6ANoCEdAqU0eoNutOnV9lChoBkdAnklMdkrf+GgHTegDaAhHQKlNrgxagVZ1fZQoaAZHQJ1SlDtw71ZoB03oA2gIR0CpUQtuLrHEdX2UKGgGR0Cd2YMrVe8gaAdN6ANoCEdAqVTbbYbsGHV9lChoBkdAnLkOyRjjJmgHTegDaAhHQKlage2/i5x1fZQoaAZHQJgNf5bhWHVoB03oA2gIR0CpW10j9n9OdX2UKGgGR0CazNkxASnMaAdN6ANoCEdAqV+4evIOpnV9lChoBkdAmzpyRKYiPmgHTegDaAhHQKljWVpsXSB1fZQoaAZHQJyXhYkmhM9oB03oA2gIR0CpZ0cZUDMedX2UKGgGR0CeQjb6guh9aAdN6ANoCEdAqWfVRpDeCXV9lChoBkdAhOBFum78N2gHTegDaAhHQKlrM0cfeUJ1fZQoaAZHQJiQUtsenydoB03oA2gIR0CpbuiFK02MdX2UKGgGR0Cb8QmSQo1DaAdN6ANoCEdAqXNTawljVnV9lChoBkdAmn/A9Net0WgHTegDaAhHQKl0KRV6u4h1fZQoaAZHQJu9ajIq9XdoB03oA2gIR0CpeYUKArhBdX2UKGgGR0CbnQ4nF5v+aAdN6ANoCEdAqX2S8OCoTHV9lChoBkdAnNMUGiYb82gHTegDaAhHQKmBmwM6RyR1fZQoaAZHQJ1702bXpW5oB03oA2gIR0Cpgi2xY7q6dX2UKGgGR0CehD2P1ct5aAdN6ANoCEdAqYWPXXiBG3V9lChoBkdAjLCDUd7v5WgHTWkCaAhHQKmI4rMC9yt1fZQoaAZHQJx/lv99+gFoB03oA2gIR0CpiWK+BYmtdX2UKGgGR0CZrvoESuhcaAdN6ANoCEdAqY3X1BdD6XV9lChoBkdAniqFvl2eQWgHTegDaAhHQKmSuWzF+/h1fZQoaAZHQJYUxuqFRHhoB03oA2gIR0Cpl2rXUYsNdX2UKGgGR0CSrp4bjtG/aAdN6ANoCEdAqZfn/cWTHXV9lChoBkdAnXz3RsuWbGgHTegDaAhHQKmcopgkTpR1fZQoaAZHQJcprNJOFg5oB03oA2gIR0CpoCAIhQnAdX2UKGgGR0CawUNzbN8maAdN6ANoCEdAqaNnDaXa8HV9lChoBkdAjroJda+vhmgHTegDaAhHQKmj4k/KQq91fZQoaAZHQKBCGfChvitoB03oA2gIR0CpqGiLVFx5dX2UKGgGR0CaEf1YQrc1aAdN6ANoCEdAqaxkFMZgonV9lChoBkdAl8K++Eh7mmgHTegDaAhHQKmxf2kBS1p1fZQoaAZHQJMdlvybx3FoB03oA2gIR0CpskkDZDiPdX2UKGgGR0CY8lJVKf4AaAdN6ANoCEdAqbccbxVhkXV9lChoBkdAm+XqTW5H3GgHTegDaAhHQKm6Y/1xsEd1fZQoaAZHQJQUY/3WWhRoB03oA2gIR0CpvZMny/bkdX2UKGgGR0Cc9WAXl8w6aAdN6ANoCEdAqb4NFpfx+nV9lChoBkdAmNPi79Q40mgHTegDaAhHQKnCg3y7PIJ1fZQoaAZHQJ6U0Elme19oB03oA2gIR0CpxdY1P3zudX2UKGgGR0CgszKCxu89aAdN6ANoCEdAqcnvlfZ26nV9lChoBkdAm2x4gA6uGWgHTegDaAhHQKnKuVcD8tR1fZQoaAZHQJrCXWz4UN9oB03oA2gIR0Cp0PGtQsPKdX2UKGgGR0CTPqWIoE0SaAdN6ANoCEdAqdRR3xFy73V9lChoBkdAmVy5Sm65G2gHTegDaAhHQKnXkcQRPGh1fZQoaAZHQJnE+6RQrMFoB03oA2gIR0Cp2CS2QXANdX2UKGgGR0CZ3naiblRxaAdN6ANoCEdAqdzLJQtSRHV9lChoBkdAlzgUkSmIkGgHTegDaAhHQKngIl9jPOZ1fZQoaAZHQJ5Q2dYnv2JoB03oA2gIR0Cp414AS39adX2UKGgGR0CeSRBnBciXaAdN6ANoCEdAqeP9kDp1R3V9lChoBkdAmDa09ECvHWgHTegDaAhHQKnq2Q6IWP91fZQoaAZHQJ8CCRbKRuFoB03oA2gIR0Cp7pnbItDldX2UKGgGR0CfR0Mvh60IaAdN6ANoCEdAqfHHUBnzx3V9lChoBkdAlhYiXt0FKWgHTegDaAhHQKnyR6QeV9p1fZQoaAZHQJ79Qeo1k2BoB03oA2gIR0Cp9uZIxxkvdX2UKGgGR0Cfb1cYZVGTaAdN6ANoCEdAqfpKfYjB23V9lChoBkdAm1OrWuoxYmgHTegDaAhHQKn9c+bmU4d1fZQoaAZHQJFeGois4kxoB03oA2gIR0Cp/fTeXRgJdX2UKGgGR0CelXEg4ffXaAdN6ANoCEdAqgPnJT2nKnV9lChoBkdAn2MV6Vt4zWgHTegDaAhHQKoJFR6Ww/x1fZQoaAZHQI90ZsZYPoVoB03oA2gIR0CqDFQCSzPbdX2UKGgGR0CaZPY1YQrdaAdN6ANoCEdAqgzSWw/xD3V9lChoBkdAhRp8TakAP2gHTegDaAhHQKoRiHj6vaF1fZQoaAZHQIYc9zbN8mdoB03oA2gIR0CqFR44p+c6dX2UKGgGR0CdMZWWhRIjaAdN6ANoCEdAqhhgmE4//3V9lChoBkdAoGNRVU+9rWgHTegDaAhHQKoY4BBiTdN1fZQoaAZHQJjD8qx1PnBoB03oA2gIR0CqHd9XT3IudX2UKGgGR0CT9zKfFrEcaAdN6ANoCEdAqiMhE8aGYnV9lChoBkdAmrhNUKiPAGgHTegDaAhHQKonPdD6WPd1fZQoaAZHQJgXcvSMLndoB03oA2gIR0CqJ7w0fozOdX2UKGgGR0CdCSuMMqjKaAdN6ANoCEdAqixGZb6gunV9lChoBkdAlodVTWGyomgHTegDaAhHQKovyHGCI1t1fZQoaAZHQJ76dP8AJcBoB03oA2gIR0CqMzx+BpYcdX2UKGgGR0CgIj5Ke05VaAdN6ANoCEdAqjO910T103V9lChoBkdAm7VEDEFW4mgHTegDaAhHQKo4btwaR6p1fZQoaAZHQKAf7Z26kIpoB03oA2gIR0CqPREyDZlGdX2UKGgGR0Cfxsd9Dx9YaAdN6ANoCEdAqkH97F85S3V9lChoBkdAnlVuzdDYy2gHTegDaAhHQKpCiKekHlh1fZQoaAZHQKAOKcwxnFpoB03oA2gIR0CqRxKSgXdkdX2UKGgGR0CbpK8AaNuMaAdN6ANoCEdAqkp59b5dnnV9lChoBkdAmNCut4iX6mgHTegDaAhHQKpN2H1OCXh1fZQoaAZHQJKrklQdjoZoB03oA2gIR0CqTlsqJ/G3dX2UKGgGR0CTL7oA4n4PaAdN6ANoCEdAqlMM6tDD0nV9lChoBkdAlJTYqG1x82gHTegDaAhHQKpWv8G9pRJ1fZQoaAZHQJUXvWTX8O1oB03oA2gIR0CqW6Sf16E8dX2UKGgGR0CbhBW+49X+aAdN6ANoCEdAqlxpIQOFxnV9lChoBkdAmsqTqjafz2gHTegDaAhHQKphfOclPad1fZQoaAZHQJ8mazfJmuloB03oA2gIR0CqZM7TtsvadX2UKGgGR0Cetm42jwhGaAdN6ANoCEdAqmgAEyLyc3V9lChoBkdAn7HDc/MW42gHTegDaAhHQKpofMnJDE51fZQoaAZHQJ3RBplBhQZoB03oA2gIR0CqbQjWK/EgdX2UKGgGR0CbrI9JjDsMaAdN6ANoCEdAqnCIuEmICXV9lChoBkdAm1bw4CIUJ2gHTegDaAhHQKp0iEBbOeJ1fZQoaAZHQI/rWF10T11oB03oA2gIR0CqdUlDF6zFdX2UKGgGR0Cf6tP6sQumaAdN6ANoCEdAqnu3evZAZHV9lChoBkdAnzCq8+Roy2gHTegDaAhHQKp/Fp5eJHl1fZQoaAZHQJ813D4xk/doB03oA2gIR0CqglH1e0HAdX2UKGgGR0CbIXX40uUVaAdN6ANoCEdAqoLPGXHBDXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa0e4c8dee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa0e4c8df70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa0e4c91040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa0e4c910d0>", "_build": "<function ActorCriticPolicy._build at 0x7fa0e4c91160>", "forward": "<function ActorCriticPolicy.forward at 0x7fa0e4c911f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa0e4c91280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa0e4c91310>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa0e4c913a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa0e4c91430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa0e4c914c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa0e4c91550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fa0e4c8fc40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681332330210229281, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOlotL1fGra+dd1wPuWPoT/RmI+/AAJSP1RuZT9XcoW/1tq+v2JoSj+HOoA/KMK+P8gmJD7A+Io++JsGP1wvL734PM0/Qx/BOX7X4D7ILWnAUr6nv29cWb9Vswc/hj6jPyievL+bgZs+INy8v2VKpz/r/qQ/qCxDv2xgbL6K2Vo/8fsUwM7saD9kED6/k6WBv4wSoT8JBq685d37PiNPY7+UlFG/Lpzsv3AqAD+6Iuq+ZsWSv1B2yL8VlrW+JJEAP+xhpL6cLLU9A2rCPs6eYr8aui0/m4GbPhqBLT/s30O/5JeEPwAEVD3fywk/+CcWP/8QVb/+P1G/DuDEvko70L7euJo/rRwBPT4FIz56Mkq/CxXTvi0Ctb9UC6G9apHPv+wguL9H8Q08mvjAvYbnPD9oFyg/Om7zvcfs874ef8K/GrotP5uBmz4agS0/7N9Dv1B5ur0F9wW/cZGNPTyvnT9bP3S/HueDP++rSz/YYni/AfLCv5Bohj8L5y0/hq36P4DgmD3gUPw/OjEFPxGlT75hdMA//L7RvDdWmj610WG/EBamv6L8sD9GZwo/05DRPyievL+bgZs+GoEtP2VKpz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADZVlE2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA/5x/vQAAAADX1Oy/AAAAADOxBT4AAAAAx6f4PwAAAADDiDa9AAAAABCP4T8AAAAAy5ynPAAAAABNCu+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAn5uENgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOFc370AAAAAbhIBwAAAAACOsmI9AAAAAIbJ3j8AAAAAfC8WvQAAAABhhdk/AAAAAPEDGL0AAAAAlrzovwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEwapLUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBKw4Q9AAAAAJBu5r8AAAAAK5aWPQAAAACZGOY/AAAAAE3Dur0AAAAA24TwPwAAAACd3O+8AAAAAB0d7L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABs5cQ1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA9BzOPQAAAACkbd+/AAAAAOC8mz0AAAAA6aDrPwAAAABAm649AAAAAIV+5j8AAAAAHBmnOgAAAADzVei/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJLUx3GGVRmMAWyUTegDjAF0lEdAqpiTzbvgFXV9lChoBkdAkp9nKwIMSmgHTegDaAhHQKqfFdEb5uZ1fZQoaAZHQJE77114gRtoB03oA2gIR0Cqobm1pj+adX2UKGgGR0CSG5C6H0sfaAdN6ANoCEdAqqM7muDBdnV9lChoBkdAkg5YA0bcXWgHTegDaAhHQKqmZNt65Xl1fZQoaAZHQJWWXUqhDgJoB03oA2gIR0Cqq9kJKJ2udX2UKGgGR0CUdEYmLLpzaAdN6ANoCEdAqq5r8WKuS3V9lChoBkdAlTa/oePq92gHTegDaAhHQKqwQqoZQ551fZQoaAZHQJLk+MVDa5BoB03oA2gIR0CqtN7j94u9dX2UKGgGR0CWnu/6O5rhaAdN6ANoCEdAqrveFHrhSHV9lChoBkdAlfZpOJtSAGgHTegDaAhHQKq+glTFVDN1fZQoaAZHQJSOzHPu5SZoB03oA2gIR0CqwCKAJ9iMdX2UKGgGR0CXB5ZRsMy8aAdN6ANoCEdAqsNZLbpNbnV9lChoBkdAmRrvD50r9WgHTegDaAhHQKrIuO+ZgG91fZQoaAZHQJTlkhwEQoVoB03oA2gIR0Cqy1fCqIacdX2UKGgGR0CXt2Z39rGjaAdN6ANoCEdAqszVliBoVXV9lChoBkdAkcJtxyXD32gHTegDaAhHQKrQ7T6SDAd1fZQoaAZHQJQ+5kUbkwNoB03oA2gIR0Cq2NXocJdCdX2UKGgGR0CV5KfkWAPNaAdN6ANoCEdAqttrTQVsUXV9lChoBkdAlJiMFMZgomgHTegDaAhHQKrc6wdKdx11fZQoaAZHQJCAT1nM+vBoB03oA2gIR0Cq4A2sA/9pdX2UKGgGR0CSznVbA1vVaAdN6ANoCEdAquVajrRjSXV9lChoBkdAlOvnq/ub7WgHTegDaAhHQKrn6814xDd1fZQoaAZHQJSL8czZYgdoB03oA2gIR0Cq6WdUS7GvdX2UKGgGR0CR6psUZeiSaAdN6ANoCEdAquzts54nnnV9lChoBkdAkNyzwH7gsWgHTegDaAhHQKr081Nxlxx1fZQoaAZHQJFhUybhFVloB03oA2gIR0Cq+CCjk+5fdX2UKGgGR0CRCZlQuVX4aAdN6ANoCEdAqvmlpsXSB3V9lChoBkdAkHslf7aZhWgHTegDaAhHQKr824rBj4J1fZQoaAZHQJFsXh73PAxoB03oA2gIR0CrAktZvDP4dX2UKGgGR0CTEmbX6InCaAdN6ANoCEdAqwTidUbT+nV9lChoBkdAlLVrvb48EGgHTegDaAhHQKsGX8/D+BJ1fZQoaAZHQJWrEEPlMh5oB03oA2gIR0CrCYHDrJKbdX2UKGgGR0CXxKy+pOvdaAdN6ANoCEdAqxDqVdHDrXV9lChoBkdAmC6+IhyKemgHTegDaAhHQKsU/XPqs2h1fZQoaAZHQJcwak8A7xNoB03oA2gIR0CrFn1BMSK4dX2UKGgGR0CYftbc45tFaAdN6ANoCEdAqxmxqCYkV3V9lChoBkdAl5OdX5nDi2gHTegDaAhHQKsfCqRU3n91fZQoaAZHQJh5ceq7yx1oB03oA2gIR0CrIaVV5rxidX2UKGgGR0CarblFtsN2aAdN6ANoCEdAqyM/8dgfEHV9lChoBkdAmgxIWYWtVGgHTegDaAhHQKsnC6NEPUd1fZQoaAZHQJYWMVpKzzFoB03oA2gIR0CrLgP2f02+dX2UKGgGR0CYKIU+s5n2aAdN6ANoCEdAqzIWzD4xlHV9lChoBkdAlXoiFPBSDWgHTegDaAhHQKs0BFMqSYB1fZQoaAZHQJiqMaXKKYRoB03oA2gIR0CrNzgBtDUmdX2UKGgGR0CblYpxFRYSaAdN6ANoCEdAqzzC9CeEqXV9lChoBkdAnIgZDmbLEGgHTegDaAhHQKs/ZrHlwLp1fZQoaAZHQJ40efseGPBoB03oA2gIR0CrQOBuO0b+dX2UKGgGR0CbvEHJtBOYaAdN6ANoCEdAq0QMTBZZCHV9lChoBkdAnkbcEmplz2gHTegDaAhHQKtKh9+gDih1fZQoaAZHQJ39TCfpUxVoB03oA2gIR0CrTn6+FlCkdX2UKGgGR0CbP7F85S3taAdN6ANoCEdAq1Di35N47nV9lChoBkdAngU5IQOFxmgHTegDaAhHQKtUTP/JeVt1fZQoaAZHQJ5f1+d9UjtoB03oA2gIR0CrWZpZOi35dX2UKGgGR0CfVEv0RODbaAdN6ANoCEdAq1w2NJe3QXV9lChoBkdAnFyp0bLlm2gHTegDaAhHQKtdq5fdAPd1fZQoaAZHQKAtxhXKbKBoB03oA2gIR0CrYMY95hScdX2UKGgGR0CgN7c/2TPjaAdN6ANoCEdAq2Y8yFfzBnV9lChoBkdAoTIJfnfVJGgHTegDaAhHQKtp66xPfsN1fZQoaAZHQKFlT5eqrBFoB03oA2gIR0CrbDj2alUIdX2UKGgGR0CgoaKNZNfxaAdN6ANoCEdAq3CrCaZx73V9lChoBkdAoQrsjAzpHWgHTegDaAhHQKt2DvrGBFx1fZQoaAZHQKCWvItDlYFoB03oA2gIR0CreNyx7iQ1dX2UKGgGR0CgTiaIeo1laAdN6ANoCEdAq3pYFV1fV3V9lChoBkdAntJy+Yc/+2gHTegDaAhHQKt9d+Haewt1fZQoaAZHQJut9gv114hoB03oA2gIR0Crgr3N9ph4dX2UKGgGR0Cfu7oUzsQeaAdN6ANoCEdAq4XnEKmbb3V9lChoBkdAnyxI82aUimgHTegDaAhHQKuICEQoTf11fZQoaAZHQKAlVkJ8fFJoB03oA2gIR0CrjNfDUExJdX2UKGgGR0CgMv7hFVkuaAdN6ANoCEdAq5KsNx2jf3V9lChoBkdAnsHg7T2FnWgHTegDaAhHQKuVO2pAD7t1fZQoaAZHQJ+/NkJ8fFJoB03oA2gIR0CrlreWv8qGdX2UKGgGR0CgV/iX6ZYxaAdN6ANoCEdAq5nkCV8kU3V9lChoBkdAnxK8TWXkYGgHTegDaAhHQKufLEjxCpp1fZQoaAZHQJ5q57CzkZJoB03oA2gIR0Croc2ZiNKidX2UKGgGR0CfPCIf8uSPaAdN6ANoCEdAq6O5rnDBM3V9lChoBkdAn4X8S9M9KWgHTegDaAhHQKuoSTMaCMB1fZQoaAZHQKAdCdzXBgxoB03oA2gIR0CrryyyUs4DdX2UKGgGR0CetTcjJMg2aAdN6ANoCEdAq7G8+iaiK3V9lChoBkdAnzVWGATZhGgHTegDaAhHQKuzVbJOnEV1fZQoaAZHQJ+386zVtoBoB03oA2gIR0Crtn9o371qdX2UKGgGR0CgDPLDye7MaAdN6ANoCEdAq7vFe0G/vnV9lChoBkdAoFTqQq7ROWgHTegDaAhHQKu+YuK4x1x1fZQoaAZHQKAXN+RYA81oB03oA2gIR0Crv98YIjW1dX2UKGgGR0CfG+/+bVjJaAdN6ANoCEdAq8P58a4tpXV9lChoBkdAnty8H8jzI2gHTegDaAhHQKvLozEaVD91fZQoaAZHQKBTImBvrGBoB03oA2gIR0CrziyM1jy4dX2UKGgGR0CgEUbD/EOzaAdN6ANoCEdAq8+ixu89OnV9lChoBkdAoDXLgGbCrWgHTegDaAhHQKvSylzEJjV1fZQoaAZHQJ3irYNAkcFoB03oA2gIR0Cr1/7m+0w8dX2UKGgGR0CfOabjtG/faAdN6ANoCEdAq9qWtdRiw3V9lChoBkdAoDGxlpXZG2gHTegDaAhHQKvcEe4Cp3p1fZQoaAZHQKBL7hE0BOpoB03oA2gIR0Cr31Zzo2XLdX2UKGgGR0CgdjBfKISEaAdN6ANoCEdAq+csmBvrGHV9lChoBkdAnxbVF6RhdGgHTegDaAhHQKvqdW8yvcJ1fZQoaAZHQKAXbps41gpoB03oA2gIR0Cr6/liSaE0dX2UKGgGR0Cfh/wqRU3oaAdN6ANoCEdAq+8fX05EMXV9lChoBkdAoGWzDbah6GgHTegDaAhHQKv0h/d69kB1fZQoaAZHQJ9IEEvCdjJoB03oA2gIR0Cr9xW1twaSdX2UKGgGR0CewgIWP91maAdN6ANoCEdAq/iOOjqOcXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:825ca048bf673bcf41d0bf113190719d90827a8f14082d923ac5dbc40176e8bb
|
3 |
+
size 1210038
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 1833.1955090927659, "std_reward": 84.5971014562679, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-12T21:59:25.070926"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2170
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ce2df898e9ad25860ad3b5775ed6da94959e498058d36255dff2b456973991a1
|
3 |
size 2170
|