BoschAI commited on
Commit
dd4333d
·
1 Parent(s): ff0c125

Initial commit

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: AntBulletEnv-v0
17
  metrics:
18
  - type: mean_reward
19
- value: 1571.09 +/- 195.21
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: AntBulletEnv-v0
17
  metrics:
18
  - type: mean_reward
19
+ value: 2058.39 +/- 89.18
20
  name: mean_reward
21
  verified: false
22
  ---
a2c-AntBulletEnv-v0.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f1fdca9d4d300d5f21a509fd2ca1185f33563553080ec822a33bc1dcb29946c0
3
- size 129264
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec0f513521c72d0e13aca43d5d0bf0f7ab75376cb12f8fe9056a95613e2bb7cf
3
+ size 129231
a2c-AntBulletEnv-v0/_stable_baselines3_version CHANGED
@@ -1 +1 @@
1
- 1.7.0
 
1
+ 1.8.0
a2c-AntBulletEnv-v0/data CHANGED
@@ -4,20 +4,20 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7faf53bee940>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7faf53bee9d0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7faf53beea60>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7faf53beeaf0>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7faf53beeb80>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7faf53beec10>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7faf53beeca0>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7faf53beed30>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7faf53beedc0>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7faf53beee50>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7faf53beeee0>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7faf53beef70>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7faf53bf0880>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {
@@ -32,39 +32,12 @@
32
  "weight_decay": 0
33
  }
34
  },
35
- "observation_space": {
36
- ":type:": "<class 'gym.spaces.box.Box'>",
37
- ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
- "dtype": "float32",
39
- "_shape": [
40
- 28
41
- ],
42
- "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
- "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
- "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
- "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
- "_np_random": null
47
- },
48
- "action_space": {
49
- ":type:": "<class 'gym.spaces.box.Box'>",
50
- ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
- "dtype": "float32",
52
- "_shape": [
53
- 8
54
- ],
55
- "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
- "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
- "bounded_below": "[ True True True True True True True True]",
58
- "bounded_above": "[ True True True True True True True True]",
59
- "_np_random": null
60
- },
61
- "n_envs": 4,
62
  "num_timesteps": 2000000,
63
  "_total_timesteps": 2000000,
64
  "_num_timesteps_at_start": 0,
65
  "seed": null,
66
  "action_noise": null,
67
- "start_time": 1680889690700788309,
68
  "learning_rate": 0.00096,
69
  "tensorboard_log": null,
70
  "lr_schedule": {
@@ -73,7 +46,7 @@
73
  },
74
  "_last_obs": {
75
  ":type:": "<class 'numpy.ndarray'>",
76
- ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFXMMb11Mzu/aIBKPkCtAUAMil2/kbMqwN/mAj7QBBq/u6eNP+u5gb6YNeq+0IZLwHGpg79+Z7M/JKPcPfJD2j6Dq2+8tCzyPyLuPD9tgLU8FGZyPnX5gEBIsKc+jof/P4zgqr/q/ro+CHj1v7v8rb8yUu++iltjvuVdDj9lyVU/Wa7Lv8XtNb8IDqs+gf2KvkmAfz4v12w/SmYhPsEYlr+D37S/o4+FP4H0UzzXJAk/4am0vSHSZD8UCj0/VTSVPFJiRL9eYGs/iy8Jv48Ypz91wz8/6v66PtB9BT+7/K2/Ty7APxPVhL9boTa+zPuvPy1H679+inw/oPmrPVNvCcBQF+s+VGG3Pj3IA0AuTTo7DhKxvwVxjz/Dy2W/iiMuP8DnOr/Qsok+5CQ+P+tftrz3dhW/1BO/PxBKxr43eOU/jOCqv+r+uj7QfQU/u/ytv9UJ3r20Qp6/fHgHv8XBuz+kl3m/mZYSP7OWmD1OeJO/Gk3uPEJ5jT8HWFU/aeSJPoKbTb+B0M+/L38GP5RnCT92Y3c+vdOxv/piNj8jeCY/tCiDvxMIkz03Y1q/EfEhPozgqr/q/ro+0H0FP7v8rb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
  },
78
  "_last_episode_starts": {
79
  ":type:": "<class 'numpy.ndarray'>",
@@ -81,15 +54,16 @@
81
  },
82
  "_last_original_obs": {
83
  ":type:": "<class 'numpy.ndarray'>",
84
- ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACb32M2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAPinovQAAAADu2uW/AAAAAGGnur0AAAAAPHbbPwAAAADMD5s9AAAAABWq+D8AAAAAZW8xvQAAAAAWH/6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZHLctQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJGLcD0AAAAAj/L1vwAAAAAp3AQ+AAAAAE8d/j8AAAAAap4HvgAAAADbQ+8/AAAAAEwZPTwAAAAA8BnvvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ9B+bYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB8ig4+AAAAALdC878AAAAA9JENvgAAAAAxN/8/AAAAAOCrlr0AAAAAXLD/PwAAAAB4BaG8AAAAAFxn7r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAshYu2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAfj+zPQAAAADMqvy/AAAAAMZPmj0AAAAAEO/vPwAAAAA8mBq9AAAAAHq74j8AAAAAGR4CPgAAAAARc96/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
  },
86
  "_episode_num": 0,
87
  "use_sde": true,
88
  "sde_sample_freq": -1,
89
  "_current_progress_remaining": 0.0,
 
90
  "ep_info_buffer": {
91
  ":type:": "<class 'collections.deque'>",
92
- ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJwDGakRBeKMAWyUTegDjAF0lEdAqtfcvXbudHV9lChoBkdAmsmSn1nM+2gHTegDaAhHQKrZ7z1bqyJ1fZQoaAZHQJRYAGfPHDJoB03oA2gIR0Cq2sdtEXtTdX2UKGgGR0CYkDNX5nDjaAdN6ANoCEdAqt4SSX+l03V9lChoBkdAlCBOJcgQpWgHTegDaAhHQKrjtBRhttR1fZQoaAZHQJre/Ov+wTxoB03oA2gIR0Cq5qxlg+hXdX2UKGgGR0CLXDUQTVUdaAdN6ANoCEdAqugCv9tMwnV9lChoBkdAmhOYzeoDPmgHTegDaAhHQKrsx2SMcZN1fZQoaAZHQJflT6k6901oB03oA2gIR0Cq8k7H6uW9dX2UKGgGR0CZP22jfvWpaAdN6ANoCEdAqvRF9c8klnV9lChoBkdAlSps8ox59mgHTegDaAhHQKr1FxkupS91fZQoaAZHQJmxwoy9EkVoB03oA2gIR0Cq+EJul41QdX2UKGgGR0CXDmiLVFx5aAdN6ANoCEdAqv3Lsa86FXV9lChoBkdAlwbT+NtIkWgHTegDaAhHQKr/0IrOJLx1fZQoaAZHQJkOTOLR8dBoB03oA2gIR0CrANayKNyYdX2UKGgGR0CQ3diKR+z/aAdN6ANoCEdAqwWzaEi+tnV9lChoBkdAlo+S04R282gHTegDaAhHQKsMcBUaQ3h1fZQoaAZHQIWQJ60IC2doB03oA2gIR0CrDok5ZKWcdX2UKGgGR0CbAepI+W4WaAdN6ANoCEdAqw9hYaHbh3V9lChoBkdAlxSCNGViWmgHTegDaAhHQKsSeoXsPat1fZQoaAZHQJ1bZmBe5WloB03oA2gIR0CrGCaMR6F/dX2UKGgGR0CVZhlkH2RJaAdN6ANoCEdAqxo1MyrPt3V9lChoBkdAlNavOpsGgWgHTegDaAhHQKsbH9JjDsN1fZQoaAZHQJNay5byH21oB03oA2gIR0CrHwmMn7YTdX2UKGgGR0CZRIntv4ucaAdN6ANoCEdAqyb0js2NvXV9lChoBkdAhSK3fAKv3mgHTegDaAhHQKspGxgRbr11fZQoaAZHQJ3HeevpyIZoB03oA2gIR0CrKfh1DBuXdX2UKGgGR0CYNM1f3N9qaAdN6ANoCEdAqy04B3iaRnV9lChoBkdAnFMfQfIS12gHTegDaAhHQKsy6z/IbOx1fZQoaAZHQJ5Fywu/UONoB03oA2gIR0CrNPqQiiZfdX2UKGgGR0CEj/28qWkaaAdN6ANoCEdAqzXdk+X7cnV9lChoBkdAmvE3JcPe6GgHTegDaAhHQKs5GYm9g4R1fZQoaAZHQJytKOXE61doB03oA2gIR0CrQZpC0F8pdX2UKGgGR0CWNRtcv/R3aAdN6ANoCEdAq0OrlJYkmnV9lChoBkdAlHoczhxYJWgHTegDaAhHQKtEiB9Tgl51fZQoaAZHQJYLRNSIgvFoB03oA2gIR0CrR7miQDFIdX2UKGgGR0CXNkHYpUgkaAdN6ANoCEdAq01gmzByj3V9lChoBkdAjQQ2LYPGyWgHTegDaAhHQKtPbEjPfKp1fZQoaAZHQJndhNlAeJZoB03oA2gIR0CrUE6Ae7tidX2UKGgGR0CI+TmjCYTkaAdN6ANoCEdAq1Oa5qdpZnV9lChoBkdAl8RVPN3W4GgHTegDaAhHQKtbIzfrKNh1fZQoaAZHQJi6eW9lEqloB03oA2gIR0CrXklcpsoEdX2UKGgGR0CXKuSflIVeaAdN6ANoCEdAq18oUWVNYnV9lChoBkdAkyoNDhLoOmgHTegDaAhHQKtiXFuNxVB1fZQoaAZHQJYqmDjBEa5oB03oA2gIR0CrZ+M6zVtodX2UKGgGR0CYaPIomXw9aAdN6ANoCEdAq2nd5nlGPXV9lChoBkdAmHAPa6BiC2gHTegDaAhHQKtqtqUu+RJ1fZQoaAZHQIjujel9BrxoB03oA2gIR0Crbeu3trsTdX2UKGgGR0CcoKEB8x9HaAdN6ANoCEdAq3Ppjc2zfXV9lChoBkdAnMXM0YTCcmgHTegDaAhHQKt28/Ho5gh1fZQoaAZHQJHwcCeVcD9oB03oA2gIR0CreFJvP1L8dX2UKGgGR0CcXuD+R5kcaAdN6ANoCEdAq3xrENvwVnV9lChoBkdAkIaK77Kq42gHTegDaAhHQKuCHnEl3Ql1fZQoaAZHQJMNrp/wy7BoB03oA2gIR0CrhCUCJXQudX2UKGgGR0CXvc4WUKRdaAdN6ANoCEdAq4T3FBIFvHV9lChoBkdAm3oQUpNKy2gHTegDaAhHQKuIHmXgLql1fZQoaAZHQJos1l8PWhBoB03oA2gIR0Crjcby6MBIdX2UKGgGR0CWYb7E5yU+aAdN6ANoCEdAq5BAFzMibHV9lChoBkdAm40RoAXEZWgHTegDaAhHQKuRdOfukUN1fZQoaAZHQJmwLJA+pwVoB03oA2gIR0CrlpXtrsSkdX2UKGgGR0CTzeXsw+MZaAdN6ANoCEdAq5ykIgNgB3V9lChoBkdAmptRA4XGfmgHTegDaAhHQKuevqfvnbJ1fZQoaAZHQIWn/PZ7HABoB03oA2gIR0Crn6vWpZOjdX2UKGgGR0Ca4RPrfLs9aAdN6ANoCEdAq6L08vEjxHV9lChoBkdAlS9z3VTaTWgHTegDaAhHQKuokDmKZUl1fZQoaAZHQJuVARWcSXdoB03oA2gIR0CrqqpAdGRWdX2UKGgGR0CbTlWCmMwUaAdN6ANoCEdAq6uUo0ALiXV9lChoBkdAnA1hvJiiI2gHTegDaAhHQKuwW1iONo91fZQoaAZHQJsOaP/7zkJoB03oA2gIR0Crt0qI7/4qdX2UKGgGR0CaY+cTakAQaAdN6ANoCEdAq7lQnv2GqXV9lChoBkdAmdWwN0/4ZmgHTegDaAhHQKu6LNrTH811fZQoaAZHQJhuTbM5fdBoB03oA2gIR0CrvVbdznzQdX2UKGgGR0CW88I6bONYaAdN6ANoCEdAq8Llqk/KQ3V9lChoBkdAnCRGE4//vWgHTegDaAhHQKvE8KtxMnJ1fZQoaAZHQJuvteeFtbdoB03oA2gIR0CrxcLWRRuTdX2UKGgGR0CYcKMFlkH2aAdN6ANoCEdAq8lzbi6xxHV9lChoBkdAgyvXirDIimgHTegDaAhHQKvRqueSSvF1fZQoaAZHQIqlnZIxxkxoB03oA2gIR0Cr08E6DGtIdX2UKGgGR0CODvwm3OObaAdN6ANoCEdAq9SjYoRZlnV9lChoBkdAkhH/VVghKWgHTegDaAhHQKvX4gTRIBl1fZQoaAZHQJThcB5ooNNoB03oA2gIR0Cr3YRAB1cMdX2UKGgGR0CcxUjJdSl4aAdN6ANoCEdAq9+bFqBVdXV9lChoBkdAmPn9nXd0rGgHTegDaAhHQKvgdgWJrL11fZQoaAZHQJGkoD6nBLxoB03oA2gIR0Cr46fBvaUSdX2UKGgGR0CY9TTFl05maAdN6ANoCEdAq+u1y925hHV9lChoBkdAlGezakAPu2gHTegDaAhHQKvuKImgJ1J1fZQoaAZHQJNy18YyfthoB03oA2gIR0Cr7wOQIUrTdX2UKGgGR0CM+JgDRtxdaAdN6ANoCEdAq/JEEA5q/XV9lChoBkdAlnWIdhiLEWgHTegDaAhHQKv32W1MM7V1fZQoaAZHQJFRHdWQwK1oB03oA2gIR0Cr+eBC2MKkdX2UKGgGR0CMtAmZVn27aAdN6ANoCEdAq/q0s6JZXHV9lChoBkdAkW3/IXCTEGgHTegDaAhHQKv93qqwQlN1fZQoaAZHQJYQE9W6shhoB03oA2gIR0CsBLHnEETydX2UKGgGR0CbivZeiSJTaAdN6ANoCEdArAfcI7eVLXV9lChoBkdAk/HS3CsOomgHTegDaAhHQKwJK3BpHqh1fZQoaAZHQJaz+V2Rq49oB03oA2gIR0CsDFhYmsvJdX2UKGgGR0CdL+fWtlqbaAdN6ANoCEdArBIjvTgEU3V9lChoBkdAnOPDoyKvV2gHTegDaAhHQKwUMkleF+N1fZQoaAZHQJhOabnX/YJoB03oA2gIR0CsFQrc9GI9dX2UKGgGR0CbQJjVQQ+VaAdN6ANoCEdArBhDKNhmXnVlLg=="
93
  },
94
  "ep_success_buffer": {
95
  ":type:": "<class 'collections.deque'>",
@@ -102,5 +76,32 @@
102
  "ent_coef": 0.0,
103
  "vf_coef": 0.4,
104
  "max_grad_norm": 0.5,
105
- "normalize_advantage": false
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
106
  }
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd0991d9160>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd0991d91f0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd0991d9280>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd0991d9310>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fd0991d93a0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fd0991d9430>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd0991d94c0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd0991d9550>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fd0991d95e0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd0991d9670>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd0991d9700>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd0991d9790>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fd0991e0440>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {
 
32
  "weight_decay": 0
33
  }
34
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
  "num_timesteps": 2000000,
36
  "_total_timesteps": 2000000,
37
  "_num_timesteps_at_start": 0,
38
  "seed": null,
39
  "action_noise": null,
40
+ "start_time": 1681323387601333219,
41
  "learning_rate": 0.00096,
42
  "tensorboard_log": null,
43
  "lr_schedule": {
 
46
  },
47
  "_last_obs": {
48
  ":type:": "<class 'numpy.ndarray'>",
49
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAKCzuT9utEG+/MITP5XfhT/t+8I/ZRkQPvTePD9EF7y/ahxAP9u8YLx9onA/317svrF0mj4q0/4/d28gv/xpm75bQaA+1DHkP0EiqT5dpfe+pGMfP/NjYj9a8SA/ik8fQD0shL/vQBg/lQrnPiRik7+003w/HusXvflfDT/mVZ4/Pjp1vQpxKD+XBDK+Cn0av39PTj9sM05AxZeDP8ARpj79naO/RhvcPjGizb6C0jDAsDt5vcxKXj28e7y+3zTnP/pfJr+lxf0/813kvSjQ2b756nc/RDjXv5UK5z4kYpO/6QygPworzr4lDBU/qHvpv8AYt75s/w0/SP3SP9APLr+N1ju/ORIkwA2uJ71dtBnA8SuZv3GRYjzV4jHAX3VHPSGlvj8v5D67yYRTPou2D72weTu/cVZFPRN2LD4J02E+PSyEv+9AGD+VCuc+7FReP0LiO75LfxG/OeEPP4Jqtb6vnB4/VTkwPxCXuD7dqyk/0u8KP5Hf7D1+y/O9KNtjvPcWWL95S1Q/Ry4cv49YwL44op0/uECwP2JcOT5i1k++OkEwv9G9zT79F5q+35FpvD0shL/vQBg/0tMNwOxUXj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
50
  },
51
  "_last_episode_starts": {
52
  ":type:": "<class 'numpy.ndarray'>",
 
54
  },
55
  "_last_original_obs": {
56
  ":type:": "<class 'numpy.ndarray'>",
57
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAMAIY1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdkKAPQAAAAAP/f6/AAAAAKMLFz0AAAAAGK37PwAAAAA2oto8AAAAAPy86z8AAAAAUmclvQAAAAAtdwDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABmdJNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMnR670AAAAA/nzbvwAAAADaO1I9AAAAAMPk4j8AAAAAkl+nvAAAAAD2PuY/AAAAAJOivTwAAAAAhWXhvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALl3YLUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAFrTQ9AAAAALre/L8AAAAADwhKPAAAAACTjOs/AAAAAJWpCT0AAAAApIbdPwAAAABINBk9AAAAAN058r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABFsN42AACAPwAAAAAAAAAAAAAAAAAAAAAAAACALYLRvQAAAAD4WPm/AAAAAO2MhD0AAAAAZcPyPwAAAAAnzcE9AAAAAELM7T8AAAAAhrG0vAAAAACbP+C/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
58
  },
59
  "_episode_num": 0,
60
  "use_sde": true,
61
  "sde_sample_freq": -1,
62
  "_current_progress_remaining": 0.0,
63
+ "_stats_window_size": 100,
64
  "ep_info_buffer": {
65
  ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJjqBbSqlxiMAWyUTegDjAF0lEdAqUIlzfaYeHV9lChoBkdAnm0uM2m52GgHTegDaAhHQKlFccEvCdl1fZQoaAZHQJm/0pVjqfRoB03oA2gIR0CpSR5sbedkdX2UKGgGR0CcKrdgv115aAdN6ANoCEdAqU0eoNutOnV9lChoBkdAnklMdkrf+GgHTegDaAhHQKlNrgxagVZ1fZQoaAZHQJ1SlDtw71ZoB03oA2gIR0CpUQtuLrHEdX2UKGgGR0Cd2YMrVe8gaAdN6ANoCEdAqVTbbYbsGHV9lChoBkdAnLkOyRjjJmgHTegDaAhHQKlage2/i5x1fZQoaAZHQJgNf5bhWHVoB03oA2gIR0CpW10j9n9OdX2UKGgGR0CazNkxASnMaAdN6ANoCEdAqV+4evIOpnV9lChoBkdAmzpyRKYiPmgHTegDaAhHQKljWVpsXSB1fZQoaAZHQJyXhYkmhM9oB03oA2gIR0CpZ0cZUDMedX2UKGgGR0CeQjb6guh9aAdN6ANoCEdAqWfVRpDeCXV9lChoBkdAhOBFum78N2gHTegDaAhHQKlrM0cfeUJ1fZQoaAZHQJiQUtsenydoB03oA2gIR0CpbuiFK02MdX2UKGgGR0Cb8QmSQo1DaAdN6ANoCEdAqXNTawljVnV9lChoBkdAmn/A9Net0WgHTegDaAhHQKl0KRV6u4h1fZQoaAZHQJu9ajIq9XdoB03oA2gIR0CpeYUKArhBdX2UKGgGR0CbnQ4nF5v+aAdN6ANoCEdAqX2S8OCoTHV9lChoBkdAnNMUGiYb82gHTegDaAhHQKmBmwM6RyR1fZQoaAZHQJ1702bXpW5oB03oA2gIR0Cpgi2xY7q6dX2UKGgGR0CehD2P1ct5aAdN6ANoCEdAqYWPXXiBG3V9lChoBkdAjLCDUd7v5WgHTWkCaAhHQKmI4rMC9yt1fZQoaAZHQJx/lv99+gFoB03oA2gIR0CpiWK+BYmtdX2UKGgGR0CZrvoESuhcaAdN6ANoCEdAqY3X1BdD6XV9lChoBkdAniqFvl2eQWgHTegDaAhHQKmSuWzF+/h1fZQoaAZHQJYUxuqFRHhoB03oA2gIR0Cpl2rXUYsNdX2UKGgGR0CSrp4bjtG/aAdN6ANoCEdAqZfn/cWTHXV9lChoBkdAnXz3RsuWbGgHTegDaAhHQKmcopgkTpR1fZQoaAZHQJcprNJOFg5oB03oA2gIR0CpoCAIhQnAdX2UKGgGR0CawUNzbN8maAdN6ANoCEdAqaNnDaXa8HV9lChoBkdAjroJda+vhmgHTegDaAhHQKmj4k/KQq91fZQoaAZHQKBCGfChvitoB03oA2gIR0CpqGiLVFx5dX2UKGgGR0CaEf1YQrc1aAdN6ANoCEdAqaxkFMZgonV9lChoBkdAl8K++Eh7mmgHTegDaAhHQKmxf2kBS1p1fZQoaAZHQJMdlvybx3FoB03oA2gIR0CpskkDZDiPdX2UKGgGR0CY8lJVKf4AaAdN6ANoCEdAqbccbxVhkXV9lChoBkdAm+XqTW5H3GgHTegDaAhHQKm6Y/1xsEd1fZQoaAZHQJQUY/3WWhRoB03oA2gIR0CpvZMny/bkdX2UKGgGR0Cc9WAXl8w6aAdN6ANoCEdAqb4NFpfx+nV9lChoBkdAmNPi79Q40mgHTegDaAhHQKnCg3y7PIJ1fZQoaAZHQJ6U0Elme19oB03oA2gIR0CpxdY1P3zudX2UKGgGR0CgszKCxu89aAdN6ANoCEdAqcnvlfZ26nV9lChoBkdAm2x4gA6uGWgHTegDaAhHQKnKuVcD8tR1fZQoaAZHQJrCXWz4UN9oB03oA2gIR0Cp0PGtQsPKdX2UKGgGR0CTPqWIoE0SaAdN6ANoCEdAqdRR3xFy73V9lChoBkdAmVy5Sm65G2gHTegDaAhHQKnXkcQRPGh1fZQoaAZHQJnE+6RQrMFoB03oA2gIR0Cp2CS2QXANdX2UKGgGR0CZ3naiblRxaAdN6ANoCEdAqdzLJQtSRHV9lChoBkdAlzgUkSmIkGgHTegDaAhHQKngIl9jPOZ1fZQoaAZHQJ5Q2dYnv2JoB03oA2gIR0Cp414AS39adX2UKGgGR0CeSRBnBciXaAdN6ANoCEdAqeP9kDp1R3V9lChoBkdAmDa09ECvHWgHTegDaAhHQKnq2Q6IWP91fZQoaAZHQJ8CCRbKRuFoB03oA2gIR0Cp7pnbItDldX2UKGgGR0CfR0Mvh60IaAdN6ANoCEdAqfHHUBnzx3V9lChoBkdAlhYiXt0FKWgHTegDaAhHQKnyR6QeV9p1fZQoaAZHQJ79Qeo1k2BoB03oA2gIR0Cp9uZIxxkvdX2UKGgGR0Cfb1cYZVGTaAdN6ANoCEdAqfpKfYjB23V9lChoBkdAm1OrWuoxYmgHTegDaAhHQKn9c+bmU4d1fZQoaAZHQJFeGois4kxoB03oA2gIR0Cp/fTeXRgJdX2UKGgGR0CelXEg4ffXaAdN6ANoCEdAqgPnJT2nKnV9lChoBkdAn2MV6Vt4zWgHTegDaAhHQKoJFR6Ww/x1fZQoaAZHQI90ZsZYPoVoB03oA2gIR0CqDFQCSzPbdX2UKGgGR0CaZPY1YQrdaAdN6ANoCEdAqgzSWw/xD3V9lChoBkdAhRp8TakAP2gHTegDaAhHQKoRiHj6vaF1fZQoaAZHQIYc9zbN8mdoB03oA2gIR0CqFR44p+c6dX2UKGgGR0CdMZWWhRIjaAdN6ANoCEdAqhhgmE4//3V9lChoBkdAoGNRVU+9rWgHTegDaAhHQKoY4BBiTdN1fZQoaAZHQJjD8qx1PnBoB03oA2gIR0CqHd9XT3IudX2UKGgGR0CT9zKfFrEcaAdN6ANoCEdAqiMhE8aGYnV9lChoBkdAmrhNUKiPAGgHTegDaAhHQKonPdD6WPd1fZQoaAZHQJgXcvSMLndoB03oA2gIR0CqJ7w0fozOdX2UKGgGR0CdCSuMMqjKaAdN6ANoCEdAqixGZb6gunV9lChoBkdAlodVTWGyomgHTegDaAhHQKovyHGCI1t1fZQoaAZHQJ76dP8AJcBoB03oA2gIR0CqMzx+BpYcdX2UKGgGR0CgIj5Ke05VaAdN6ANoCEdAqjO910T103V9lChoBkdAm7VEDEFW4mgHTegDaAhHQKo4btwaR6p1fZQoaAZHQKAf7Z26kIpoB03oA2gIR0CqPREyDZlGdX2UKGgGR0Cfxsd9Dx9YaAdN6ANoCEdAqkH97F85S3V9lChoBkdAnlVuzdDYy2gHTegDaAhHQKpCiKekHlh1fZQoaAZHQKAOKcwxnFpoB03oA2gIR0CqRxKSgXdkdX2UKGgGR0CbpK8AaNuMaAdN6ANoCEdAqkp59b5dnnV9lChoBkdAmNCut4iX6mgHTegDaAhHQKpN2H1OCXh1fZQoaAZHQJKrklQdjoZoB03oA2gIR0CqTlsqJ/G3dX2UKGgGR0CTL7oA4n4PaAdN6ANoCEdAqlMM6tDD0nV9lChoBkdAlJTYqG1x82gHTegDaAhHQKpWv8G9pRJ1fZQoaAZHQJUXvWTX8O1oB03oA2gIR0CqW6Sf16E8dX2UKGgGR0CbhBW+49X+aAdN6ANoCEdAqlxpIQOFxnV9lChoBkdAmsqTqjafz2gHTegDaAhHQKphfOclPad1fZQoaAZHQJ8mazfJmuloB03oA2gIR0CqZM7TtsvadX2UKGgGR0Cetm42jwhGaAdN6ANoCEdAqmgAEyLyc3V9lChoBkdAn7HDc/MW42gHTegDaAhHQKpofMnJDE51fZQoaAZHQJ3RBplBhQZoB03oA2gIR0CqbQjWK/EgdX2UKGgGR0CbrI9JjDsMaAdN6ANoCEdAqnCIuEmICXV9lChoBkdAm1bw4CIUJ2gHTegDaAhHQKp0iEBbOeJ1fZQoaAZHQI/rWF10T11oB03oA2gIR0CqdUlDF6zFdX2UKGgGR0Cf6tP6sQumaAdN6ANoCEdAqnu3evZAZHV9lChoBkdAnzCq8+Roy2gHTegDaAhHQKp/Fp5eJHl1fZQoaAZHQJ813D4xk/doB03oA2gIR0CqglH1e0HAdX2UKGgGR0CbIXX40uUVaAdN6ANoCEdAqoLPGXHBDXVlLg=="
67
  },
68
  "ep_success_buffer": {
69
  ":type:": "<class 'collections.deque'>",
 
76
  "ent_coef": 0.0,
77
  "vf_coef": 0.4,
78
  "max_grad_norm": 0.5,
79
+ "normalize_advantage": false,
80
+ "observation_space": {
81
+ ":type:": "<class 'gym.spaces.box.Box'>",
82
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
83
+ "dtype": "float32",
84
+ "_shape": [
85
+ 28
86
+ ],
87
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
88
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
89
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
90
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
91
+ "_np_random": null
92
+ },
93
+ "action_space": {
94
+ ":type:": "<class 'gym.spaces.box.Box'>",
95
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
96
+ "dtype": "float32",
97
+ "_shape": [
98
+ 8
99
+ ],
100
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
101
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
102
+ "bounded_below": "[ True True True True True True True True]",
103
+ "bounded_above": "[ True True True True True True True True]",
104
+ "_np_random": null
105
+ },
106
+ "n_envs": 4
107
  }
a2c-AntBulletEnv-v0/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3f3b865dd8d39ade9c9c4cd4127725b8a2636d4a0818f80dfce8a312e50b9e39
3
  size 56190
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ec235b5ca5c6901ea70a12661b5390476f9a613a9999b4d5afaf04faae3412d
3
  size 56190
a2c-AntBulletEnv-v0/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9630b9ea29b06bb4b9bbcb69525d86ce89a3604c88950efdbeaf92a426fc353b
3
- size 56958
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b08b90ebe17d076afbb5d0b3ca9d6aac79dd90dc32cfdf4c33ff00bdb365849
3
+ size 56894
a2c-AntBulletEnv-v0/system_info.txt CHANGED
@@ -1,6 +1,6 @@
1
  - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
  - Python: 3.9.16
3
- - Stable-Baselines3: 1.7.0
4
  - PyTorch: 2.0.0+cu118
5
  - GPU Enabled: True
6
  - Numpy: 1.22.4
 
1
  - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
  - Python: 3.9.16
3
+ - Stable-Baselines3: 1.8.0
4
  - PyTorch: 2.0.0+cu118
5
  - GPU Enabled: True
6
  - Numpy: 1.22.4
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7faf53bee940>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7faf53bee9d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7faf53beea60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7faf53beeaf0>", "_build": "<function ActorCriticPolicy._build at 0x7faf53beeb80>", "forward": "<function ActorCriticPolicy.forward at 0x7faf53beec10>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7faf53beeca0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7faf53beed30>", "_predict": "<function ActorCriticPolicy._predict at 0x7faf53beedc0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7faf53beee50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7faf53beeee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7faf53beef70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7faf53bf0880>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680889690700788309, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFXMMb11Mzu/aIBKPkCtAUAMil2/kbMqwN/mAj7QBBq/u6eNP+u5gb6YNeq+0IZLwHGpg79+Z7M/JKPcPfJD2j6Dq2+8tCzyPyLuPD9tgLU8FGZyPnX5gEBIsKc+jof/P4zgqr/q/ro+CHj1v7v8rb8yUu++iltjvuVdDj9lyVU/Wa7Lv8XtNb8IDqs+gf2KvkmAfz4v12w/SmYhPsEYlr+D37S/o4+FP4H0UzzXJAk/4am0vSHSZD8UCj0/VTSVPFJiRL9eYGs/iy8Jv48Ypz91wz8/6v66PtB9BT+7/K2/Ty7APxPVhL9boTa+zPuvPy1H679+inw/oPmrPVNvCcBQF+s+VGG3Pj3IA0AuTTo7DhKxvwVxjz/Dy2W/iiMuP8DnOr/Qsok+5CQ+P+tftrz3dhW/1BO/PxBKxr43eOU/jOCqv+r+uj7QfQU/u/ytv9UJ3r20Qp6/fHgHv8XBuz+kl3m/mZYSP7OWmD1OeJO/Gk3uPEJ5jT8HWFU/aeSJPoKbTb+B0M+/L38GP5RnCT92Y3c+vdOxv/piNj8jeCY/tCiDvxMIkz03Y1q/EfEhPozgqr/q/ro+0H0FP7v8rb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACb32M2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAPinovQAAAADu2uW/AAAAAGGnur0AAAAAPHbbPwAAAADMD5s9AAAAABWq+D8AAAAAZW8xvQAAAAAWH/6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAZHLctQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJGLcD0AAAAAj/L1vwAAAAAp3AQ+AAAAAE8d/j8AAAAAap4HvgAAAADbQ+8/AAAAAEwZPTwAAAAA8BnvvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ9B+bYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB8ig4+AAAAALdC878AAAAA9JENvgAAAAAxN/8/AAAAAOCrlr0AAAAAXLD/PwAAAAB4BaG8AAAAAFxn7r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAshYu2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAfj+zPQAAAADMqvy/AAAAAMZPmj0AAAAAEO/vPwAAAAA8mBq9AAAAAHq74j8AAAAAGR4CPgAAAAARc96/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJwDGakRBeKMAWyUTegDjAF0lEdAqtfcvXbudHV9lChoBkdAmsmSn1nM+2gHTegDaAhHQKrZ7z1bqyJ1fZQoaAZHQJRYAGfPHDJoB03oA2gIR0Cq2sdtEXtTdX2UKGgGR0CYkDNX5nDjaAdN6ANoCEdAqt4SSX+l03V9lChoBkdAlCBOJcgQpWgHTegDaAhHQKrjtBRhttR1fZQoaAZHQJre/Ov+wTxoB03oA2gIR0Cq5qxlg+hXdX2UKGgGR0CLXDUQTVUdaAdN6ANoCEdAqugCv9tMwnV9lChoBkdAmhOYzeoDPmgHTegDaAhHQKrsx2SMcZN1fZQoaAZHQJflT6k6901oB03oA2gIR0Cq8k7H6uW9dX2UKGgGR0CZP22jfvWpaAdN6ANoCEdAqvRF9c8klnV9lChoBkdAlSps8ox59mgHTegDaAhHQKr1FxkupS91fZQoaAZHQJmxwoy9EkVoB03oA2gIR0Cq+EJul41QdX2UKGgGR0CXDmiLVFx5aAdN6ANoCEdAqv3Lsa86FXV9lChoBkdAlwbT+NtIkWgHTegDaAhHQKr/0IrOJLx1fZQoaAZHQJkOTOLR8dBoB03oA2gIR0CrANayKNyYdX2UKGgGR0CQ3diKR+z/aAdN6ANoCEdAqwWzaEi+tnV9lChoBkdAlo+S04R282gHTegDaAhHQKsMcBUaQ3h1fZQoaAZHQIWQJ60IC2doB03oA2gIR0CrDok5ZKWcdX2UKGgGR0CbAepI+W4WaAdN6ANoCEdAqw9hYaHbh3V9lChoBkdAlxSCNGViWmgHTegDaAhHQKsSeoXsPat1fZQoaAZHQJ1bZmBe5WloB03oA2gIR0CrGCaMR6F/dX2UKGgGR0CVZhlkH2RJaAdN6ANoCEdAqxo1MyrPt3V9lChoBkdAlNavOpsGgWgHTegDaAhHQKsbH9JjDsN1fZQoaAZHQJNay5byH21oB03oA2gIR0CrHwmMn7YTdX2UKGgGR0CZRIntv4ucaAdN6ANoCEdAqyb0js2NvXV9lChoBkdAhSK3fAKv3mgHTegDaAhHQKspGxgRbr11fZQoaAZHQJ3HeevpyIZoB03oA2gIR0CrKfh1DBuXdX2UKGgGR0CYNM1f3N9qaAdN6ANoCEdAqy04B3iaRnV9lChoBkdAnFMfQfIS12gHTegDaAhHQKsy6z/IbOx1fZQoaAZHQJ5Fywu/UONoB03oA2gIR0CrNPqQiiZfdX2UKGgGR0CEj/28qWkaaAdN6ANoCEdAqzXdk+X7cnV9lChoBkdAmvE3JcPe6GgHTegDaAhHQKs5GYm9g4R1fZQoaAZHQJytKOXE61doB03oA2gIR0CrQZpC0F8pdX2UKGgGR0CWNRtcv/R3aAdN6ANoCEdAq0OrlJYkmnV9lChoBkdAlHoczhxYJWgHTegDaAhHQKtEiB9Tgl51fZQoaAZHQJYLRNSIgvFoB03oA2gIR0CrR7miQDFIdX2UKGgGR0CXNkHYpUgkaAdN6ANoCEdAq01gmzByj3V9lChoBkdAjQQ2LYPGyWgHTegDaAhHQKtPbEjPfKp1fZQoaAZHQJndhNlAeJZoB03oA2gIR0CrUE6Ae7tidX2UKGgGR0CI+TmjCYTkaAdN6ANoCEdAq1Oa5qdpZnV9lChoBkdAl8RVPN3W4GgHTegDaAhHQKtbIzfrKNh1fZQoaAZHQJi6eW9lEqloB03oA2gIR0CrXklcpsoEdX2UKGgGR0CXKuSflIVeaAdN6ANoCEdAq18oUWVNYnV9lChoBkdAkyoNDhLoOmgHTegDaAhHQKtiXFuNxVB1fZQoaAZHQJYqmDjBEa5oB03oA2gIR0CrZ+M6zVtodX2UKGgGR0CYaPIomXw9aAdN6ANoCEdAq2nd5nlGPXV9lChoBkdAmHAPa6BiC2gHTegDaAhHQKtqtqUu+RJ1fZQoaAZHQIjujel9BrxoB03oA2gIR0Crbeu3trsTdX2UKGgGR0CcoKEB8x9HaAdN6ANoCEdAq3Ppjc2zfXV9lChoBkdAnMXM0YTCcmgHTegDaAhHQKt28/Ho5gh1fZQoaAZHQJHwcCeVcD9oB03oA2gIR0CreFJvP1L8dX2UKGgGR0CcXuD+R5kcaAdN6ANoCEdAq3xrENvwVnV9lChoBkdAkIaK77Kq42gHTegDaAhHQKuCHnEl3Ql1fZQoaAZHQJMNrp/wy7BoB03oA2gIR0CrhCUCJXQudX2UKGgGR0CXvc4WUKRdaAdN6ANoCEdAq4T3FBIFvHV9lChoBkdAm3oQUpNKy2gHTegDaAhHQKuIHmXgLql1fZQoaAZHQJos1l8PWhBoB03oA2gIR0Crjcby6MBIdX2UKGgGR0CWYb7E5yU+aAdN6ANoCEdAq5BAFzMibHV9lChoBkdAm40RoAXEZWgHTegDaAhHQKuRdOfukUN1fZQoaAZHQJmwLJA+pwVoB03oA2gIR0CrlpXtrsSkdX2UKGgGR0CTzeXsw+MZaAdN6ANoCEdAq5ykIgNgB3V9lChoBkdAmptRA4XGfmgHTegDaAhHQKuevqfvnbJ1fZQoaAZHQIWn/PZ7HABoB03oA2gIR0Crn6vWpZOjdX2UKGgGR0Ca4RPrfLs9aAdN6ANoCEdAq6L08vEjxHV9lChoBkdAlS9z3VTaTWgHTegDaAhHQKuokDmKZUl1fZQoaAZHQJuVARWcSXdoB03oA2gIR0CrqqpAdGRWdX2UKGgGR0CbTlWCmMwUaAdN6ANoCEdAq6uUo0ALiXV9lChoBkdAnA1hvJiiI2gHTegDaAhHQKuwW1iONo91fZQoaAZHQJsOaP/7zkJoB03oA2gIR0Crt0qI7/4qdX2UKGgGR0CaY+cTakAQaAdN6ANoCEdAq7lQnv2GqXV9lChoBkdAmdWwN0/4ZmgHTegDaAhHQKu6LNrTH811fZQoaAZHQJhuTbM5fdBoB03oA2gIR0CrvVbdznzQdX2UKGgGR0CW88I6bONYaAdN6ANoCEdAq8Llqk/KQ3V9lChoBkdAnCRGE4//vWgHTegDaAhHQKvE8KtxMnJ1fZQoaAZHQJuvteeFtbdoB03oA2gIR0CrxcLWRRuTdX2UKGgGR0CYcKMFlkH2aAdN6ANoCEdAq8lzbi6xxHV9lChoBkdAgyvXirDIimgHTegDaAhHQKvRqueSSvF1fZQoaAZHQIqlnZIxxkxoB03oA2gIR0Cr08E6DGtIdX2UKGgGR0CODvwm3OObaAdN6ANoCEdAq9SjYoRZlnV9lChoBkdAkhH/VVghKWgHTegDaAhHQKvX4gTRIBl1fZQoaAZHQJThcB5ooNNoB03oA2gIR0Cr3YRAB1cMdX2UKGgGR0CcxUjJdSl4aAdN6ANoCEdAq9+bFqBVdXV9lChoBkdAmPn9nXd0rGgHTegDaAhHQKvgdgWJrL11fZQoaAZHQJGkoD6nBLxoB03oA2gIR0Cr46fBvaUSdX2UKGgGR0CY9TTFl05maAdN6ANoCEdAq+u1y925hHV9lChoBkdAlGezakAPu2gHTegDaAhHQKvuKImgJ1J1fZQoaAZHQJNy18YyfthoB03oA2gIR0Cr7wOQIUrTdX2UKGgGR0CM+JgDRtxdaAdN6ANoCEdAq/JEEA5q/XV9lChoBkdAlnWIdhiLEWgHTegDaAhHQKv32W1MM7V1fZQoaAZHQJFRHdWQwK1oB03oA2gIR0Cr+eBC2MKkdX2UKGgGR0CMtAmZVn27aAdN6ANoCEdAq/q0s6JZXHV9lChoBkdAkW3/IXCTEGgHTegDaAhHQKv93qqwQlN1fZQoaAZHQJYQE9W6shhoB03oA2gIR0CsBLHnEETydX2UKGgGR0CbivZeiSJTaAdN6ANoCEdArAfcI7eVLXV9lChoBkdAk/HS3CsOomgHTegDaAhHQKwJK3BpHqh1fZQoaAZHQJaz+V2Rq49oB03oA2gIR0CsDFhYmsvJdX2UKGgGR0CdL+fWtlqbaAdN6ANoCEdArBIjvTgEU3V9lChoBkdAnOPDoyKvV2gHTegDaAhHQKwUMkleF+N1fZQoaAZHQJhOabnX/YJoB03oA2gIR0CsFQrc9GI9dX2UKGgGR0CbQJjVQQ+VaAdN6ANoCEdArBhDKNhmXnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd0991d9160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd0991d91f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd0991d9280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd0991d9310>", "_build": "<function ActorCriticPolicy._build at 0x7fd0991d93a0>", "forward": "<function ActorCriticPolicy.forward at 0x7fd0991d9430>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd0991d94c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd0991d9550>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd0991d95e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd0991d9670>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd0991d9700>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd0991d9790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd0991e0440>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681323387601333219, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAKCzuT9utEG+/MITP5XfhT/t+8I/ZRkQPvTePD9EF7y/ahxAP9u8YLx9onA/317svrF0mj4q0/4/d28gv/xpm75bQaA+1DHkP0EiqT5dpfe+pGMfP/NjYj9a8SA/ik8fQD0shL/vQBg/lQrnPiRik7+003w/HusXvflfDT/mVZ4/Pjp1vQpxKD+XBDK+Cn0av39PTj9sM05AxZeDP8ARpj79naO/RhvcPjGizb6C0jDAsDt5vcxKXj28e7y+3zTnP/pfJr+lxf0/813kvSjQ2b756nc/RDjXv5UK5z4kYpO/6QygPworzr4lDBU/qHvpv8AYt75s/w0/SP3SP9APLr+N1ju/ORIkwA2uJ71dtBnA8SuZv3GRYjzV4jHAX3VHPSGlvj8v5D67yYRTPou2D72weTu/cVZFPRN2LD4J02E+PSyEv+9AGD+VCuc+7FReP0LiO75LfxG/OeEPP4Jqtb6vnB4/VTkwPxCXuD7dqyk/0u8KP5Hf7D1+y/O9KNtjvPcWWL95S1Q/Ry4cv49YwL44op0/uECwP2JcOT5i1k++OkEwv9G9zT79F5q+35FpvD0shL/vQBg/0tMNwOxUXj+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAMAIY1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdkKAPQAAAAAP/f6/AAAAAKMLFz0AAAAAGK37PwAAAAA2oto8AAAAAPy86z8AAAAAUmclvQAAAAAtdwDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABmdJNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMnR670AAAAA/nzbvwAAAADaO1I9AAAAAMPk4j8AAAAAkl+nvAAAAAD2PuY/AAAAAJOivTwAAAAAhWXhvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALl3YLUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAFrTQ9AAAAALre/L8AAAAADwhKPAAAAACTjOs/AAAAAJWpCT0AAAAApIbdPwAAAABINBk9AAAAAN058r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABFsN42AACAPwAAAAAAAAAAAAAAAAAAAAAAAACALYLRvQAAAAD4WPm/AAAAAO2MhD0AAAAAZcPyPwAAAAAnzcE9AAAAAELM7T8AAAAAhrG0vAAAAACbP+C/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJjqBbSqlxiMAWyUTegDjAF0lEdAqUIlzfaYeHV9lChoBkdAnm0uM2m52GgHTegDaAhHQKlFccEvCdl1fZQoaAZHQJm/0pVjqfRoB03oA2gIR0CpSR5sbedkdX2UKGgGR0CcKrdgv115aAdN6ANoCEdAqU0eoNutOnV9lChoBkdAnklMdkrf+GgHTegDaAhHQKlNrgxagVZ1fZQoaAZHQJ1SlDtw71ZoB03oA2gIR0CpUQtuLrHEdX2UKGgGR0Cd2YMrVe8gaAdN6ANoCEdAqVTbbYbsGHV9lChoBkdAnLkOyRjjJmgHTegDaAhHQKlage2/i5x1fZQoaAZHQJgNf5bhWHVoB03oA2gIR0CpW10j9n9OdX2UKGgGR0CazNkxASnMaAdN6ANoCEdAqV+4evIOpnV9lChoBkdAmzpyRKYiPmgHTegDaAhHQKljWVpsXSB1fZQoaAZHQJyXhYkmhM9oB03oA2gIR0CpZ0cZUDMedX2UKGgGR0CeQjb6guh9aAdN6ANoCEdAqWfVRpDeCXV9lChoBkdAhOBFum78N2gHTegDaAhHQKlrM0cfeUJ1fZQoaAZHQJiQUtsenydoB03oA2gIR0CpbuiFK02MdX2UKGgGR0Cb8QmSQo1DaAdN6ANoCEdAqXNTawljVnV9lChoBkdAmn/A9Net0WgHTegDaAhHQKl0KRV6u4h1fZQoaAZHQJu9ajIq9XdoB03oA2gIR0CpeYUKArhBdX2UKGgGR0CbnQ4nF5v+aAdN6ANoCEdAqX2S8OCoTHV9lChoBkdAnNMUGiYb82gHTegDaAhHQKmBmwM6RyR1fZQoaAZHQJ1702bXpW5oB03oA2gIR0Cpgi2xY7q6dX2UKGgGR0CehD2P1ct5aAdN6ANoCEdAqYWPXXiBG3V9lChoBkdAjLCDUd7v5WgHTWkCaAhHQKmI4rMC9yt1fZQoaAZHQJx/lv99+gFoB03oA2gIR0CpiWK+BYmtdX2UKGgGR0CZrvoESuhcaAdN6ANoCEdAqY3X1BdD6XV9lChoBkdAniqFvl2eQWgHTegDaAhHQKmSuWzF+/h1fZQoaAZHQJYUxuqFRHhoB03oA2gIR0Cpl2rXUYsNdX2UKGgGR0CSrp4bjtG/aAdN6ANoCEdAqZfn/cWTHXV9lChoBkdAnXz3RsuWbGgHTegDaAhHQKmcopgkTpR1fZQoaAZHQJcprNJOFg5oB03oA2gIR0CpoCAIhQnAdX2UKGgGR0CawUNzbN8maAdN6ANoCEdAqaNnDaXa8HV9lChoBkdAjroJda+vhmgHTegDaAhHQKmj4k/KQq91fZQoaAZHQKBCGfChvitoB03oA2gIR0CpqGiLVFx5dX2UKGgGR0CaEf1YQrc1aAdN6ANoCEdAqaxkFMZgonV9lChoBkdAl8K++Eh7mmgHTegDaAhHQKmxf2kBS1p1fZQoaAZHQJMdlvybx3FoB03oA2gIR0CpskkDZDiPdX2UKGgGR0CY8lJVKf4AaAdN6ANoCEdAqbccbxVhkXV9lChoBkdAm+XqTW5H3GgHTegDaAhHQKm6Y/1xsEd1fZQoaAZHQJQUY/3WWhRoB03oA2gIR0CpvZMny/bkdX2UKGgGR0Cc9WAXl8w6aAdN6ANoCEdAqb4NFpfx+nV9lChoBkdAmNPi79Q40mgHTegDaAhHQKnCg3y7PIJ1fZQoaAZHQJ6U0Elme19oB03oA2gIR0CpxdY1P3zudX2UKGgGR0CgszKCxu89aAdN6ANoCEdAqcnvlfZ26nV9lChoBkdAm2x4gA6uGWgHTegDaAhHQKnKuVcD8tR1fZQoaAZHQJrCXWz4UN9oB03oA2gIR0Cp0PGtQsPKdX2UKGgGR0CTPqWIoE0SaAdN6ANoCEdAqdRR3xFy73V9lChoBkdAmVy5Sm65G2gHTegDaAhHQKnXkcQRPGh1fZQoaAZHQJnE+6RQrMFoB03oA2gIR0Cp2CS2QXANdX2UKGgGR0CZ3naiblRxaAdN6ANoCEdAqdzLJQtSRHV9lChoBkdAlzgUkSmIkGgHTegDaAhHQKngIl9jPOZ1fZQoaAZHQJ5Q2dYnv2JoB03oA2gIR0Cp414AS39adX2UKGgGR0CeSRBnBciXaAdN6ANoCEdAqeP9kDp1R3V9lChoBkdAmDa09ECvHWgHTegDaAhHQKnq2Q6IWP91fZQoaAZHQJ8CCRbKRuFoB03oA2gIR0Cp7pnbItDldX2UKGgGR0CfR0Mvh60IaAdN6ANoCEdAqfHHUBnzx3V9lChoBkdAlhYiXt0FKWgHTegDaAhHQKnyR6QeV9p1fZQoaAZHQJ79Qeo1k2BoB03oA2gIR0Cp9uZIxxkvdX2UKGgGR0Cfb1cYZVGTaAdN6ANoCEdAqfpKfYjB23V9lChoBkdAm1OrWuoxYmgHTegDaAhHQKn9c+bmU4d1fZQoaAZHQJFeGois4kxoB03oA2gIR0Cp/fTeXRgJdX2UKGgGR0CelXEg4ffXaAdN6ANoCEdAqgPnJT2nKnV9lChoBkdAn2MV6Vt4zWgHTegDaAhHQKoJFR6Ww/x1fZQoaAZHQI90ZsZYPoVoB03oA2gIR0CqDFQCSzPbdX2UKGgGR0CaZPY1YQrdaAdN6ANoCEdAqgzSWw/xD3V9lChoBkdAhRp8TakAP2gHTegDaAhHQKoRiHj6vaF1fZQoaAZHQIYc9zbN8mdoB03oA2gIR0CqFR44p+c6dX2UKGgGR0CdMZWWhRIjaAdN6ANoCEdAqhhgmE4//3V9lChoBkdAoGNRVU+9rWgHTegDaAhHQKoY4BBiTdN1fZQoaAZHQJjD8qx1PnBoB03oA2gIR0CqHd9XT3IudX2UKGgGR0CT9zKfFrEcaAdN6ANoCEdAqiMhE8aGYnV9lChoBkdAmrhNUKiPAGgHTegDaAhHQKonPdD6WPd1fZQoaAZHQJgXcvSMLndoB03oA2gIR0CqJ7w0fozOdX2UKGgGR0CdCSuMMqjKaAdN6ANoCEdAqixGZb6gunV9lChoBkdAlodVTWGyomgHTegDaAhHQKovyHGCI1t1fZQoaAZHQJ76dP8AJcBoB03oA2gIR0CqMzx+BpYcdX2UKGgGR0CgIj5Ke05VaAdN6ANoCEdAqjO910T103V9lChoBkdAm7VEDEFW4mgHTegDaAhHQKo4btwaR6p1fZQoaAZHQKAf7Z26kIpoB03oA2gIR0CqPREyDZlGdX2UKGgGR0Cfxsd9Dx9YaAdN6ANoCEdAqkH97F85S3V9lChoBkdAnlVuzdDYy2gHTegDaAhHQKpCiKekHlh1fZQoaAZHQKAOKcwxnFpoB03oA2gIR0CqRxKSgXdkdX2UKGgGR0CbpK8AaNuMaAdN6ANoCEdAqkp59b5dnnV9lChoBkdAmNCut4iX6mgHTegDaAhHQKpN2H1OCXh1fZQoaAZHQJKrklQdjoZoB03oA2gIR0CqTlsqJ/G3dX2UKGgGR0CTL7oA4n4PaAdN6ANoCEdAqlMM6tDD0nV9lChoBkdAlJTYqG1x82gHTegDaAhHQKpWv8G9pRJ1fZQoaAZHQJUXvWTX8O1oB03oA2gIR0CqW6Sf16E8dX2UKGgGR0CbhBW+49X+aAdN6ANoCEdAqlxpIQOFxnV9lChoBkdAmsqTqjafz2gHTegDaAhHQKphfOclPad1fZQoaAZHQJ8mazfJmuloB03oA2gIR0CqZM7TtsvadX2UKGgGR0Cetm42jwhGaAdN6ANoCEdAqmgAEyLyc3V9lChoBkdAn7HDc/MW42gHTegDaAhHQKpofMnJDE51fZQoaAZHQJ3RBplBhQZoB03oA2gIR0CqbQjWK/EgdX2UKGgGR0CbrI9JjDsMaAdN6ANoCEdAqnCIuEmICXV9lChoBkdAm1bw4CIUJ2gHTegDaAhHQKp0iEBbOeJ1fZQoaAZHQI/rWF10T11oB03oA2gIR0CqdUlDF6zFdX2UKGgGR0Cf6tP6sQumaAdN6ANoCEdAqnu3evZAZHV9lChoBkdAnzCq8+Roy2gHTegDaAhHQKp/Fp5eJHl1fZQoaAZHQJ813D4xk/doB03oA2gIR0CqglH1e0HAdX2UKGgGR0CbIXX40uUVaAdN6ANoCEdAqoLPGXHBDXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:83b22b7fcc261abdc6487ef68e923e172635231b7e13e991d94d0b812f58cf41
3
- size 1070333
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a9a73c627d3cdca6ab0e39ef33d7865cb8e878c62580e60f0ea42d3a5910008
3
+ size 1010230
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 1571.0874974519909, "std_reward": 195.20949686486267, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-07T19:36:01.978694"}
 
1
+ {"mean_reward": 2058.3902649878464, "std_reward": 89.18285213660633, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-12T19:13:58.989854"}
vec_normalize.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:cb6dedc709f7f947df64e8e3152fbf038962a85e6f5e9c2b2c261993804b3286
3
- size 2136
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:310045a485d7755d90bb0102917aeef2f9ce7ebab24fb4f490e08124faeb997b
3
+ size 2170