BrainTheos's picture
update model card README.md
bbb641f
metadata
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - BrainTheos/ojpl
metrics:
  - wer
model-index:
  - name: whisper-medium-ln-ojpl-2
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: BrainTheos/ojpl
          type: BrainTheos/ojpl
          config: default
          split: train
          args: default
        metrics:
          - name: Wer
            type: wer
            value: 0.29010989010989013

whisper-medium-ln-ojpl-2

This model is a fine-tuned version of openai/whisper-medium on the BrainTheos/ojpl dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1202
  • Wer Ortho: 35.8309
  • Wer: 0.2901

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.0172 23.19 1000 0.9966 41.9139 0.3407
0.0053 46.38 2000 1.0716 37.0920 0.2996
0.0034 69.57 3000 1.1329 36.0163 0.2850
0.0021 92.75 4000 1.1202 35.8309 0.2901

Framework versions

  • Transformers 4.32.0.dev0
  • Pytorch 1.13.1+cu117
  • Datasets 2.13.1
  • Tokenizers 0.13.3