metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-tiny-luganda-final
results: []
whisper-tiny-luganda-final
This model is a fine-tuned version of openai/whisper-tiny on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4549
- Wer: 0.4660
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- training_steps: 21000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
2.0498 | 0.1088 | 500 | 0.9947 | 0.8351 |
1.5134 | 0.2175 | 1000 | 0.7854 | 0.7198 |
1.2494 | 0.3263 | 1500 | 0.6915 | 0.7817 |
1.1587 | 0.4351 | 2000 | 0.6377 | 0.7916 |
1.0453 | 0.5438 | 2500 | 0.5958 | 0.7276 |
1.0065 | 0.6526 | 3000 | 0.5708 | 0.5803 |
0.935 | 0.7614 | 3500 | 0.5478 | 0.5882 |
0.8838 | 0.8701 | 4000 | 0.5256 | 0.5876 |
0.8956 | 0.9789 | 4500 | 0.5123 | 0.5380 |
0.6998 | 1.0877 | 5000 | 0.5078 | 0.5332 |
0.6735 | 1.1964 | 5500 | 0.4976 | 0.5400 |
0.7159 | 1.3052 | 6000 | 0.4934 | 0.5097 |
0.6693 | 1.4140 | 6500 | 0.4843 | 0.5043 |
0.6513 | 1.5227 | 7000 | 0.4774 | 0.5038 |
0.6478 | 1.6315 | 7500 | 0.4736 | 0.5015 |
0.6554 | 1.7403 | 8000 | 0.4634 | 0.5042 |
0.6491 | 1.8490 | 8500 | 0.4608 | 0.4941 |
0.6636 | 1.9578 | 9000 | 0.4526 | 0.4774 |
0.4392 | 2.0666 | 9500 | 0.4581 | 0.4788 |
0.4567 | 2.1753 | 10000 | 0.4575 | 0.4842 |
0.4383 | 2.2841 | 10500 | 0.4562 | 0.4787 |
0.4479 | 2.3929 | 11000 | 0.4546 | 0.4747 |
0.4431 | 2.5016 | 11500 | 0.4517 | 0.4820 |
0.4354 | 2.6104 | 12000 | 0.4498 | 0.4612 |
0.4956 | 2.7192 | 12500 | 0.4442 | 0.4825 |
0.4427 | 2.8279 | 13000 | 0.4454 | 0.4693 |
0.4371 | 2.9367 | 13500 | 0.4430 | 0.4573 |
0.2794 | 3.0455 | 14000 | 0.4429 | 0.4544 |
0.2826 | 3.1542 | 14500 | 0.4491 | 0.4694 |
0.2914 | 3.2630 | 15000 | 0.4497 | 0.4536 |
0.3065 | 3.3718 | 15500 | 0.4501 | 0.4557 |
0.2879 | 3.4805 | 16000 | 0.4492 | 0.4532 |
0.2703 | 3.5893 | 16500 | 0.4495 | 0.4535 |
0.269 | 3.6981 | 17000 | 0.4466 | 0.4681 |
0.2834 | 3.8068 | 17500 | 0.4445 | 0.4686 |
0.2758 | 3.9156 | 18000 | 0.4470 | 0.4660 |
0.1819 | 4.0244 | 18500 | 0.4497 | 0.4640 |
0.1855 | 4.1331 | 19000 | 0.4510 | 0.4611 |
0.1832 | 4.2419 | 19500 | 0.4543 | 0.4693 |
0.1826 | 4.3507 | 20000 | 0.4558 | 0.4640 |
0.1779 | 4.4594 | 20500 | 0.4553 | 0.4672 |
0.1821 | 4.5682 | 21000 | 0.4549 | 0.4660 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0