|
--- |
|
license: apache-2.0 |
|
base_model: google/mt5-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- bleu |
|
model-index: |
|
- name: mt5-base-translation-spa-guc |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mt5-base-translation-spa-guc |
|
|
|
This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.4465 |
|
- Bleu: 3.088 |
|
- Gen Len: 16.5468 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 10 |
|
- num_epochs: 15 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |
|
|:-------------:|:-----:|:------:|:---------------:|:------:|:-------:| |
|
| 2.3515 | 1.0 | 7668 | 2.3255 | 1.2092 | 16.8878 | |
|
| 2.3229 | 2.0 | 15336 | 2.0343 | 1.3948 | 16.6967 | |
|
| 1.828 | 3.0 | 23004 | 1.8707 | 1.7948 | 16.729 | |
|
| 1.7692 | 4.0 | 30672 | 1.7654 | 1.9816 | 16.5538 | |
|
| 3.1073 | 5.0 | 38340 | 1.6878 | 2.2335 | 16.6662 | |
|
| 1.8726 | 6.0 | 46008 | 1.6280 | 2.4231 | 16.566 | |
|
| 1.8611 | 7.0 | 53676 | 1.5870 | 2.5839 | 16.5724 | |
|
| 1.4777 | 8.0 | 61344 | 1.5476 | 2.7415 | 16.5651 | |
|
| 1.5331 | 9.0 | 69012 | 1.5181 | 2.8105 | 16.5862 | |
|
| 1.6348 | 10.0 | 76680 | 1.4972 | 2.9386 | 16.582 | |
|
| 1.2195 | 11.0 | 84348 | 1.4739 | 2.9339 | 16.578 | |
|
| 1.8651 | 12.0 | 92016 | 1.4647 | 3.0058 | 16.5431 | |
|
| 1.3484 | 13.0 | 99684 | 1.4537 | 3.079 | 16.5513 | |
|
| 1.5675 | 14.0 | 107352 | 1.4484 | 3.0925 | 16.5496 | |
|
| 1.6518 | 15.0 | 115020 | 1.4465 | 3.088 | 16.5468 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 1.13.1+cu117 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|