zephyr-7b-dpo-full / README.md
BubbleJoe's picture
End of training
aeda3e7 verified
metadata
license: apache-2.0
base_model: alignment-handbook/zephyr-7b-sft-full
tags:
  - alignment-handbook
  - trl
  - dpo
  - generated_from_trainer
  - trl
  - dpo
  - generated_from_trainer
datasets:
  - HuggingFaceH4/ultrafeedback_binarized
model-index:
  - name: zephyr-7b-dpo-full
    results: []

zephyr-7b-dpo-full

This model is a fine-tuned version of alignment-handbook/zephyr-7b-sft-full on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5020
  • Rewards/chosen: -0.8985
  • Rewards/rejected: -1.8744
  • Rewards/accuracies: 0.7812
  • Rewards/margins: 0.9759
  • Logps/rejected: -450.1291
  • Logps/chosen: -352.4258
  • Logits/rejected: 1.7371
  • Logits/chosen: 0.9003

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.5709 0.2092 100 0.5765 -0.3415 -0.8321 0.7305 0.4906 -345.8958 -296.7220 -1.0885 -1.2465
0.5427 0.4184 200 0.5256 -0.7352 -1.5375 0.7695 0.8022 -416.4311 -336.0986 0.9059 0.1815
0.4892 0.6276 300 0.5082 -0.8910 -1.8210 0.7695 0.9300 -444.7822 -351.6719 1.3892 0.5828
0.5037 0.8368 400 0.5031 -0.8365 -1.7881 0.7852 0.9517 -441.4968 -346.2211 1.6106 0.7959

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 3.1.0
  • Tokenizers 0.19.1