llama3-8b-instruct-text-to-sql
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the generator dataset.
Training and evaluation data
b-mc2/sql-create-context
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 3
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 6
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 3
Framework versions
- PEFT 0.10.0
- Transformers 4.40.0
- Pytorch 2.2.0+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
Usage
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_id = "ByteForge/Llama_3_8b_Instruct_Text2Sql_FullPrecision_Finetuned"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
)
prompt="""
CREATE TABLE stadium (
stadium_id number,
location text,
name text,
capacity number,
highest number,
lowest number,
average number
)
CREATE TABLE singer (
singer_id number,
name text,
country text,
song_name text,
song_release_year text,
age number,
is_male others
)
CREATE TABLE concert (
concert_id number,
concert_name text,
theme text,
stadium_id text,
year text
)
CREATE TABLE singer_in_concert (
concert_id number,
singer_id text
)
-- Using valid SQLite, answer the following questions for the tables provided above.
-- What is the maximum, the average, and the minimum capacity of stadiums ? (Generate 1 Sql query. No explaination needed)
answer:
"""
messages = [
{"role": "system", "content": "You are an text to SQL query translator. Users will ask you questions in English and you will generate a SQL query based on the provided SCHEMA."},
{"role": "user", "content": prompt},
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = model.generate(
input_ids,
max_new_tokens=256,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
response = outputs[0]
print(tokenizer.decode(response, skip_special_tokens=True))
#
#system
#You are an text to SQL query translator. Users will ask you questions in English and you will generate a SQL query based on the provided SCHEMA.
#SCHEMA:
#CREATE TABLE match_season (College VARCHAR, POSITION VARCHAR)
#user
#Which college have both players with position midfielder and players with position defender?
#assistant
#SELECT College FROM match_season WHERE POSITION = "Midfielder" INTERSECT SELECT College FROM match_season WHERE POSITION = "Defender"
#
- Downloads last month
- 0
Model tree for ByteForge/Llama_3_8b_Instruct_Text2Sql_FullPrecision_Finetuned
Base model
meta-llama/Meta-Llama-3-8B-Instruct