CollectiveSFT

This model is a fine-tuned version of internlm/internlm2_5-7b on some medical datasets.

Model description

CollectiveSFT: Scaling Large Language Models for Chinese Medical Benchmark with Collective Instructions in Healthcare.

Official Code Repo:https://github.com/CAS-SIAT-XinHai/CollectiveSFT

Intended uses & limitations

The model may have limitations in chat functionality.

Training and evaluation data

Language: English

Dataset Name Style Size
PubMedQA QA 273,518
MedMCQA MCQA 182,822
HeadQA QA 2,657
Total 458,997

Language: Chinese

Dataset Name Style Size
cMedQA2 QA 100,000
cMedDialogu Dialogue 792,099
webMedQA QA 252,850
MedicalDialog Dialogue 2,725,989
CMID NER 12,254
NLPEC MCQA 18,703
CMB MCQA 269,359
MLEC-QA MCQA 108,988
DISCMe Dialogue 464,898
Total 4,745,140

For detailed dataset specifications and access instructions, please refer to our paper.

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 256
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 3.0

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
14
Safetensors
Model size
7.74B params
Tensor type
BF16
·
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.

Model tree for CAS-SIAT-XinHai/CollectiveSFT

Finetuned
(9)
this model