sqlcoder-7b-2_FineTuned_QLORA_Adapter

This model is a fine-tuned version of defog/sqlcoder-7b-2 on 260 SQL examples (Task, Schema and Answer triplets) related to financial/banking domain.

Intended uses & limitations

MS SQL Server - SQL Query Generation

Training

This model was trained using the QLoRA method with the following configurations:

  • r = 64,
  • lora_alpha = 32
  • lora_dropout = 0.05
  • bias='none'
  • task_type='CAUSAL_LM'

Quantization parameters:

  • load_in_4bit=True
  • bnb_4bit_quant_type="nf4"
  • bnb_4bit_compute_dtype=torch.bfloat16

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 1
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Framework versions

  • PEFT 0.13.2
  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.2
  • Tokenizers 0.19.1
Downloads last month
6
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for CHZY-1/sqlcoder-7b-2_FineTuned_PEFT_QLORA_adapter

Adapter
(14)
this model