cedricbonhomme commited on
Commit
82a36b9
·
verified ·
1 Parent(s): 122bcbf

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +33 -7
README.md CHANGED
@@ -9,6 +9,8 @@ metrics:
9
  model-index:
10
  - name: vulnerability-severity-classification-roberta-base
11
  results: []
 
 
12
  ---
13
 
14
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -16,22 +18,46 @@ should probably proofread and complete it, then remove this comment. -->
16
 
17
  # vulnerability-severity-classification-roberta-base
18
 
19
- This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
 
20
  It achieves the following results on the evaluation set:
21
  - Loss: 0.5199
22
  - Accuracy: 0.8203
23
 
 
24
  ## Model description
25
 
26
- More information needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
- ## Intended uses & limitations
 
 
 
29
 
30
- More information needed
31
 
32
- ## Training and evaluation data
 
 
 
 
33
 
34
- More information needed
35
 
36
  ## Training procedure
37
 
@@ -62,4 +88,4 @@ The following hyperparameters were used during training:
62
  - Transformers 4.49.0
63
  - Pytorch 2.6.0+cu124
64
  - Datasets 3.3.2
65
- - Tokenizers 0.21.0
 
9
  model-index:
10
  - name: vulnerability-severity-classification-roberta-base
11
  results: []
12
+ datasets:
13
+ - CIRCL/vulnerability-scores
14
  ---
15
 
16
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
18
 
19
  # vulnerability-severity-classification-roberta-base
20
 
21
+ This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the dataset [CIRCL/vulnerability-scores](https://huggingface.co/datasets/CIRCL/vulnerability-scores).
22
+
23
  It achieves the following results on the evaluation set:
24
  - Loss: 0.5199
25
  - Accuracy: 0.8203
26
 
27
+
28
  ## Model description
29
 
30
+ It is a classification model and is aimed to assist in classifying vulnerabilities by severity based on their descriptions.
31
+
32
+
33
+ ## How to get started with the model
34
+
35
+ ```python
36
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
37
+ import torch
38
+
39
+ labels = ["low", "medium", "high", "critical"]
40
+
41
+ model_name = "CIRCL/vulnerability-scores"
42
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
43
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
44
+ model.eval()
45
+
46
+ test_description = "langchain_experimental 0.0.14 allows an attacker to bypass the CVE-2023-36258 fix and execute arbitrary code via the PALChain in the python exec method."
47
+ inputs = tokenizer(test_description, return_tensors="pt", truncation=True, padding=True)
48
 
49
+ # Run inference
50
+ with torch.no_grad():
51
+ outputs = model(**inputs)
52
+ predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
53
 
 
54
 
55
+ # Print results
56
+ print("Predictions:", predictions)
57
+ predicted_class = torch.argmax(predictions, dim=-1).item()
58
+ print("Predicted severity:", labels[predicted_class])
59
+ ```
60
 
 
61
 
62
  ## Training procedure
63
 
 
88
  - Transformers 4.49.0
89
  - Pytorch 2.6.0+cu124
90
  - Datasets 3.3.2
91
+ - Tokenizers 0.21.0