|
--- |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: re-irr-sv-agr-lstm-2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# re-irr-sv-agr-lstm-2 |
|
|
|
This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 3.9891 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 2 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- training_steps: 3052726 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:-------:|:---------------:| |
|
| 4.7913 | 0.03 | 76320 | 4.7806 | |
|
| 4.504 | 1.03 | 152640 | 4.4977 | |
|
| 4.3624 | 2.03 | 228960 | 4.3626 | |
|
| 4.2755 | 0.03 | 305280 | 4.2788 | |
|
| 4.2123 | 1.03 | 381600 | 4.2215 | |
|
| 4.1669 | 0.03 | 457920 | 4.1800 | |
|
| 4.1297 | 1.03 | 534240 | 4.1490 | |
|
| 4.093 | 0.03 | 610560 | 4.1240 | |
|
| 4.0664 | 0.03 | 686880 | 4.1048 | |
|
| 4.0437 | 1.03 | 763200 | 4.0895 | |
|
| 4.0205 | 2.03 | 839520 | 4.0752 | |
|
| 4.0071 | 0.03 | 915840 | 4.0649 | |
|
| 3.993 | 1.03 | 992160 | 4.0546 | |
|
| 3.9751 | 0.03 | 1068480 | 4.0470 | |
|
| 3.9596 | 1.03 | 1144800 | 4.0400 | |
|
| 3.9436 | 0.03 | 1221120 | 4.0353 | |
|
| 3.9289 | 0.03 | 1297440 | 4.0297 | |
|
| 3.9188 | 0.03 | 1373760 | 4.0243 | |
|
| 3.91 | 1.03 | 1450080 | 4.0209 | |
|
| 3.9084 | 0.03 | 1526400 | 4.0170 | |
|
| 3.9049 | 1.03 | 1602720 | 4.0137 | |
|
| 3.9022 | 2.03 | 1679040 | 4.0111 | |
|
| 3.8974 | 0.03 | 1755360 | 4.0089 | |
|
| 3.8887 | 1.03 | 1831680 | 4.0065 | |
|
| 3.8836 | 2.03 | 1908000 | 4.0044 | |
|
| 3.8786 | 0.03 | 1984320 | 4.0022 | |
|
| 3.8708 | 1.03 | 2060640 | 4.0006 | |
|
| 3.8708 | 0.03 | 2136960 | 3.9994 | |
|
| 3.8682 | 1.03 | 2213280 | 3.9980 | |
|
| 3.86 | 0.03 | 2289600 | 3.9970 | |
|
| 3.855 | 1.03 | 2365920 | 3.9957 | |
|
| 3.8443 | 0.03 | 2442240 | 3.9946 | |
|
| 3.8383 | 1.03 | 2518560 | 3.9934 | |
|
| 3.8349 | 2.03 | 2594880 | 3.9924 | |
|
| 3.8312 | 0.03 | 2671200 | 3.9916 | |
|
| 3.8356 | 1.03 | 2747520 | 3.9910 | |
|
| 3.836 | 0.03 | 2823840 | 3.9904 | |
|
| 3.8403 | 1.03 | 2900160 | 3.9899 | |
|
| 3.8385 | 0.03 | 2976480 | 3.9895 | |
|
| 3.8368 | 1.02 | 3052726 | 3.9891 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.3 |
|
- Pytorch 2.0.1 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.3 |
|
|