sd3-finetuned-aws
This is a standard PEFT LoRA derived from stabilityai/stable-diffusion-3.5-large.
The main validation prompt used during training was:
zukythedog chilling in the living room
Validation settings
- CFG:
5.0
- CFG Rescale:
0.0
- Steps:
20
- Sampler:
FlowMatchEulerDiscreteScheduler
- Seed:
42
- Resolution:
512x512
- Skip-layer guidance:
Note: The validation settings are not necessarily the same as the training settings.
You can find some example images in the following gallery:
The text encoder was not trained. You may reuse the base model text encoder for inference.
Training settings
Training epochs: 4
Training steps: 2600
Learning rate: 5e-05
- Learning rate schedule: polynomial
- Warmup steps: 100
Max grad norm: 0.01
Effective batch size: 1
- Micro-batch size: 1
- Gradient accumulation steps: 1
- Number of GPUs: 1
Gradient checkpointing: True
Prediction type: flow-matching (extra parameters=['shift=3'])
Optimizer: adamw_bf16
Trainable parameter precision: Pure BF16
Caption dropout probability: 0.0%
LoRA Rank: 64
LoRA Alpha: None
LoRA Dropout: 0.1
LoRA initialisation style: default
Datasets
zukythedog-dataset-512
- Repeats: 5
- Total number of images: 23
- Total number of aspect buckets: 1
- Resolution: 0.262144 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
zukythedog-dataset-1024
- Repeats: 5
- Total number of images: 23
- Total number of aspect buckets: 1
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
zukythedog-dataset-512-crop
- Repeats: 5
- Total number of images: 23
- Total number of aspect buckets: 1
- Resolution: 0.262144 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
- Used for regularisation data: No
zukythedog-dataset-1024-crop
- Repeats: 5
- Total number of images: 23
- Total number of aspect buckets: 1
- Resolution: 1.048576 megapixels
- Cropped: True
- Crop style: random
- Crop aspect: square
- Used for regularisation data: No
Inference
import torch
from diffusers import DiffusionPipeline
model_id = 'stabilityai/stable-diffusion-3.5-large'
adapter_id = 'CarlosRiverMe/sd3-finetuned-aws'
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
pipeline.load_lora_weights(adapter_id)
prompt = "zukythedog chilling in the living room"
negative_prompt = 'blurry, cropped, ugly'
## Optional: quantise the model to save on vram.
## Note: The model was quantised during training, and so it is recommended to do the same during inference time.
from optimum.quanto import quantize, freeze, qint8
quantize(pipeline.transformer, weights=qint8)
freeze(pipeline.transformer)
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
image = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=20,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
width=512,
height=512,
guidance_scale=5.0,
).images[0]
image.save("output.png", format="PNG")
- Downloads last month
- 4
Model tree for CarlosRiverMe/sd3-finetuned-aws
Base model
stabilityai/stable-diffusion-3.5-large