CarrotAI's picture
Upload folder using huggingface_hub
3a9b19c verified
|
raw
history blame
3.09 kB
---
license: apache-2.0
base_model: HuggingFaceTB/SmolLM-360M-Instruct
tags:
- generated_from_trainer
model-index:
- name: SomlLm-360M-Ko-Instruct
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
base_model: HuggingFaceTB/SmolLM-360M-Instruct
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
chat_template: chatml
datasets:
- path: CarrotAI/ko-instruction-dataset
type: alpaca
- path: werty1248/sharegpt-tagengo-gpt4-ko
type: sharegpt
- path: changpt/ko-lima-vicuna
type: sharegpt
- path: davidkim205/kollm-converations
type: sharegpt
- path: CarrotAI/Amazing-Instructions
type: alpaca
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./SomlLm-360M-Ko-Instruct
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 6
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 2e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
evals_per_epoch: 1
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
```
</details><br>
# SomlLm-360M-Ko-Instruct
This model is a fine-tuned version of [HuggingFaceTB/SmolLM-360M-Instruct](https://huggingface.co/HuggingFaceTB/SmolLM-360M-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1516
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 8
- total_train_batch_size: 96
- total_eval_batch_size: 12
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.1401 | 0.9993 | 1316 | 1.1516 |
### Framework versions
- Transformers 4.42.3
- Pytorch 2.3.1+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1