Casper0508's picture
End of training
e588a7c verified
metadata
license: llama2
base_model: meta-llama/Llama-2-7b-chat-hf
tags:
  - generated_from_trainer
model-index:
  - name: MSc_llama2_finetuned_model_secondData3
    results: []
library_name: peft

MSc_llama2_finetuned_model_secondData3

This model is a fine-tuned version of meta-llama/Llama-2-7b-chat-hf on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6783

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

The following bitsandbytes quantization config was used during training:

  • quant_method: bitsandbytes
  • _load_in_8bit: False
  • _load_in_4bit: True
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: None
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: nf4
  • bnb_4bit_use_double_quant: True
  • bnb_4bit_compute_dtype: bfloat16
  • load_in_4bit: True
  • load_in_8bit: False

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.03
  • training_steps: 250

Training results

Training Loss Epoch Step Validation Loss
3.9959 1.33 10 3.6441
3.376 2.67 20 2.9540
2.6309 4.0 30 2.1878
1.9511 5.33 40 1.7018
1.6088 6.67 50 1.4477
1.3311 8.0 60 1.1180
0.9548 9.33 70 0.8536
0.8083 10.67 80 0.8007
0.7523 12.0 90 0.7644
0.6984 13.33 100 0.7371
0.6687 14.67 110 0.7191
0.634 16.0 120 0.7079
0.6045 17.33 130 0.6965
0.592 18.67 140 0.6902
0.5726 20.0 150 0.6868
0.5574 21.33 160 0.6824
0.5398 22.67 170 0.6813
0.5364 24.0 180 0.6807
0.5288 25.33 190 0.6793
0.5219 26.67 200 0.6790
0.5217 28.0 210 0.6796
0.5175 29.33 220 0.6785
0.5117 30.67 230 0.6787
0.5167 32.0 240 0.6780
0.5136 33.33 250 0.6783

Framework versions

  • PEFT 0.4.0
  • Transformers 4.38.2
  • Pytorch 2.3.1+cu121
  • Datasets 2.13.1
  • Tokenizers 0.15.2