Configuration Parsing Warning: In adapter_config.json: "peft.base_model_name_or_path" must be a string

Mixtral_Alpace_v2

This model is a fine-tuned version of mistralai/Mixtral-8x7B-v0.1 on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3154

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2.5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 15
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss
0.3573 0.0327 10 0.3448
0.3569 0.0654 20 0.3446
0.365 0.0980 30 0.3439
0.341 0.1307 40 0.3437
0.3101 0.1634 50 0.3428
0.3538 0.1961 60 0.3419
0.32 0.2288 70 0.3414
0.3361 0.2614 80 0.3403
0.3211 0.2941 90 0.3395
0.3583 0.3268 100 0.3386
0.3174 0.3595 110 0.3382
0.3097 0.3922 120 0.3378
0.33 0.4248 130 0.3374
0.3159 0.4575 140 0.3368
0.3636 0.4902 150 0.3366
0.334 0.5229 160 0.3356
0.348 0.5556 170 0.3353
0.3296 0.5882 180 0.3350
0.3498 0.6209 190 0.3338
0.3461 0.6536 200 0.3337
0.3378 0.6863 210 0.3335
0.3114 0.7190 220 0.3327
0.3291 0.7516 230 0.3324
0.3189 0.7843 240 0.3320
0.3214 0.8170 250 0.3311
0.3117 0.8497 260 0.3309
0.3025 0.8824 270 0.3310
0.2679 0.9150 280 0.3306
0.3592 0.9477 290 0.3304
0.3097 0.9804 300 0.3296
0.3662 1.0131 310 0.3295
0.2969 1.0458 320 0.3292
0.3109 1.0784 330 0.3290
0.3369 1.1111 340 0.3287
0.3101 1.1438 350 0.3287
0.3264 1.1765 360 0.3283
0.3328 1.2092 370 0.3278
0.3234 1.2418 380 0.3276
0.301 1.2745 390 0.3278
0.3357 1.3072 400 0.3273
0.3058 1.3399 410 0.3271
0.3204 1.3725 420 0.3266
0.3393 1.4052 430 0.3265
0.288 1.4379 440 0.3265
0.3121 1.4706 450 0.3259
0.301 1.5033 460 0.3255
0.2912 1.5359 470 0.3254
0.3426 1.5686 480 0.3253
0.3256 1.6013 490 0.3254
0.291 1.6340 500 0.3253
0.3234 1.6667 510 0.3249
0.3024 1.6993 520 0.3242
0.3628 1.7320 530 0.3240
0.331 1.7647 540 0.3234
0.321 1.7974 550 0.3235
0.2981 1.8301 560 0.3230
0.3369 1.8627 570 0.3233
0.3033 1.8954 580 0.3227
0.3578 1.9281 590 0.3224
0.2838 1.9608 600 0.3224
0.3026 1.9935 610 0.3221
0.2858 2.0261 620 0.3228
0.3001 2.0588 630 0.3225
0.2974 2.0915 640 0.3219
0.3071 2.1242 650 0.3217
0.3216 2.1569 660 0.3217
0.3056 2.1895 670 0.3216
0.3392 2.2222 680 0.3215
0.314 2.2549 690 0.3214
0.3243 2.2876 700 0.3210
0.3232 2.3203 710 0.3213
0.3365 2.3529 720 0.3211
0.3163 2.3856 730 0.3212
0.3086 2.4183 740 0.3211
0.3048 2.4510 750 0.3207
0.299 2.4837 760 0.3203
0.3203 2.5163 770 0.3203
0.278 2.5490 780 0.3200
0.3353 2.5817 790 0.3197
0.3314 2.6144 800 0.3198
0.2688 2.6471 810 0.3197
0.302 2.6797 820 0.3194
0.2843 2.7124 830 0.3195
0.3105 2.7451 840 0.3190
0.276 2.7778 850 0.3193
0.3206 2.8105 860 0.3192
0.3011 2.8431 870 0.3191
0.3367 2.8758 880 0.3189
0.2918 2.9085 890 0.3184
0.3343 2.9412 900 0.3187
0.2801 2.9739 910 0.3185
0.2959 3.0065 920 0.3185
0.3392 3.0392 930 0.3186
0.3197 3.0719 940 0.3182
0.2919 3.1046 950 0.3181
0.3544 3.1373 960 0.3182
0.2779 3.1699 970 0.3180
0.3001 3.2026 980 0.3180
0.3102 3.2353 990 0.3181
0.3152 3.2680 1000 0.3182
0.2962 3.3007 1010 0.3179
0.2831 3.3333 1020 0.3177
0.3103 3.3660 1030 0.3179
0.2766 3.3987 1040 0.3175
0.295 3.4314 1050 0.3175
0.3139 3.4641 1060 0.3176
0.299 3.4967 1070 0.3173
0.3034 3.5294 1080 0.3170
0.3052 3.5621 1090 0.3170
0.2937 3.5948 1100 0.3170
0.3046 3.6275 1110 0.3170
0.3094 3.6601 1120 0.3171
0.2875 3.6928 1130 0.3169
0.2847 3.7255 1140 0.3169
0.2947 3.7582 1150 0.3171
0.2925 3.7908 1160 0.3168
0.2938 3.8235 1170 0.3167
0.2955 3.8562 1180 0.3167
0.333 3.8889 1190 0.3167
0.3391 3.9216 1200 0.3165
0.2887 3.9542 1210 0.3166
0.3067 3.9869 1220 0.3163
0.3349 4.0196 1230 0.3164
0.308 4.0523 1240 0.3162
0.3252 4.0850 1250 0.3163
0.3077 4.1176 1260 0.3162
0.3198 4.1503 1270 0.3162
0.2891 4.1830 1280 0.3162
0.2712 4.2157 1290 0.3162
0.3083 4.2484 1300 0.3162
0.3032 4.2810 1310 0.3161
0.3024 4.3137 1320 0.3159
0.2966 4.3464 1330 0.3160
0.3046 4.3791 1340 0.3159
0.284 4.4118 1350 0.3158
0.2885 4.4444 1360 0.3157
0.2951 4.4771 1370 0.3158
0.2772 4.5098 1380 0.3157
0.305 4.5425 1390 0.3156
0.2834 4.5752 1400 0.3156
0.3365 4.6078 1410 0.3157
0.3128 4.6405 1420 0.3158
0.3004 4.6732 1430 0.3157
0.2844 4.7059 1440 0.3156
0.3193 4.7386 1450 0.3155
0.3053 4.7712 1460 0.3156
0.2961 4.8039 1470 0.3156
0.2999 4.8366 1480 0.3155
0.2644 4.8693 1490 0.3155
0.311 4.9020 1500 0.3155
0.3044 4.9346 1510 0.3155
0.3 4.9673 1520 0.3156
0.3378 5.0 1530 0.3154

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Cem13/Mixtral_Alpace_v2

Adapter
(90)
this model