File size: 9,319 Bytes
41c6d47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: mit
base_model: microsoft/layoutlm-base-uncased
tags:
- generated_from_trainer
datasets:
- funsd
model-index:
- name: layoutlm-funsd
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# layoutlm-funsd

This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1103
- Answer: {'precision': 0.4171539961013645, 'recall': 0.5290482076637825, 'f1': 0.4664850136239782, 'number': 809}
- Header: {'precision': 0.26595744680851063, 'recall': 0.21008403361344538, 'f1': 0.23474178403755866, 'number': 119}
- Question: {'precision': 0.5105058365758754, 'recall': 0.615962441314554, 'f1': 0.5582978723404256, 'number': 1065}
- Overall Precision: 0.4611
- Overall Recall: 0.5564
- Overall F1: 0.5043
- Overall Accuracy: 0.6256

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Answer                                                                                                     | Header                                                                                                       | Question                                                                                                    | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:----------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 1.7545        | 1.0   | 10   | 1.4910          | {'precision': 0.04744787922358016, 'recall': 0.0815822002472188, 'f1': 0.06000000000000001, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                  | {'precision': 0.2316715542521994, 'recall': 0.29671361502347415, 'f1': 0.2601893783449979, 'number': 1065}  | 0.1386            | 0.1917         | 0.1608     | 0.3843           |
| 1.4327        | 2.0   | 20   | 1.3684          | {'precision': 0.1908983451536643, 'recall': 0.3992583436341162, 'f1': 0.258296681327469, 'number': 809}    | {'precision': 0.08333333333333333, 'recall': 0.01680672268907563, 'f1': 0.027972027972027972, 'number': 119} | {'precision': 0.2686771761480466, 'recall': 0.36807511737089205, 'f1': 0.3106180665610142, 'number': 1065}  | 0.2258            | 0.3598         | 0.2775     | 0.4199           |
| 1.3           | 3.0   | 30   | 1.2336          | {'precision': 0.23386581469648562, 'recall': 0.45241038318912236, 'f1': 0.3083403538331929, 'number': 809} | {'precision': 0.23404255319148937, 'recall': 0.09243697478991597, 'f1': 0.13253012048192772, 'number': 119}  | {'precision': 0.3207196029776675, 'recall': 0.48544600938967136, 'f1': 0.3862532685842361, 'number': 1065}  | 0.2773            | 0.4486         | 0.3427     | 0.4777           |
| 1.1799        | 4.0   | 40   | 1.1284          | {'precision': 0.26886145404663925, 'recall': 0.484548825710754, 'f1': 0.3458314953683282, 'number': 809}   | {'precision': 0.2903225806451613, 'recall': 0.226890756302521, 'f1': 0.25471698113207547, 'number': 119}     | {'precision': 0.369108049311095, 'recall': 0.4779342723004695, 'f1': 0.41653027823240585, 'number': 1065}   | 0.3167            | 0.4656         | 0.3770     | 0.5629           |
| 1.0681        | 5.0   | 50   | 1.1019          | {'precision': 0.2949346405228758, 'recall': 0.446229913473424, 'f1': 0.35514018691588783, 'number': 809}   | {'precision': 0.3373493975903614, 'recall': 0.23529411764705882, 'f1': 0.2772277227722772, 'number': 119}    | {'precision': 0.38892345986309895, 'recall': 0.5868544600938967, 'f1': 0.46781437125748504, 'number': 1065} | 0.3480            | 0.5088         | 0.4133     | 0.5724           |
| 0.9791        | 6.0   | 60   | 1.2060          | {'precision': 0.33286810886252616, 'recall': 0.5896168108776267, 'f1': 0.4255129348795718, 'number': 809}  | {'precision': 0.4, 'recall': 0.20168067226890757, 'f1': 0.2681564245810056, 'number': 119}                   | {'precision': 0.45607476635514016, 'recall': 0.4582159624413146, 'f1': 0.45714285714285713, 'number': 1065} | 0.3859            | 0.4962         | 0.4342     | 0.5718           |
| 0.9138        | 7.0   | 70   | 1.0604          | {'precision': 0.37743589743589745, 'recall': 0.45488257107540175, 'f1': 0.4125560538116592, 'number': 809} | {'precision': 0.3333333333333333, 'recall': 0.25210084033613445, 'f1': 0.28708133971291866, 'number': 119}   | {'precision': 0.4469026548672566, 'recall': 0.5690140845070423, 'f1': 0.5006195786864932, 'number': 1065}   | 0.4147            | 0.5038         | 0.4549     | 0.5983           |
| 0.8555        | 8.0   | 80   | 1.0361          | {'precision': 0.3559928443649374, 'recall': 0.4919653893695921, 'f1': 0.4130773222625843, 'number': 809}   | {'precision': 0.3076923076923077, 'recall': 0.20168067226890757, 'f1': 0.2436548223350254, 'number': 119}    | {'precision': 0.45045045045045046, 'recall': 0.6103286384976526, 'f1': 0.5183413078149921, 'number': 1065}  | 0.4062            | 0.5379         | 0.4629     | 0.6104           |
| 0.8062        | 9.0   | 90   | 1.0676          | {'precision': 0.37511520737327186, 'recall': 0.5030902348578492, 'f1': 0.4297782470960929, 'number': 809}  | {'precision': 0.31521739130434784, 'recall': 0.24369747899159663, 'f1': 0.27488151658767773, 'number': 119}  | {'precision': 0.4796310530361261, 'recall': 0.5859154929577465, 'f1': 0.5274725274725274, 'number': 1065}   | 0.4278            | 0.5319         | 0.4742     | 0.6094           |
| 0.7981        | 10.0  | 100  | 1.0901          | {'precision': 0.3904109589041096, 'recall': 0.4932014833127318, 'f1': 0.4358274167121791, 'number': 809}   | {'precision': 0.3132530120481928, 'recall': 0.2184873949579832, 'f1': 0.25742574257425743, 'number': 119}    | {'precision': 0.47112462006079026, 'recall': 0.5821596244131455, 'f1': 0.5207895842083158, 'number': 1065}  | 0.4316            | 0.5243         | 0.4735     | 0.6113           |
| 0.7159        | 11.0  | 110  | 1.1141          | {'precision': 0.3889908256880734, 'recall': 0.5241038318912238, 'f1': 0.4465508162190627, 'number': 809}   | {'precision': 0.26732673267326734, 'recall': 0.226890756302521, 'f1': 0.24545454545454548, 'number': 119}    | {'precision': 0.5027844073190135, 'recall': 0.5934272300469483, 'f1': 0.5443583118001722, 'number': 1065}   | 0.4424            | 0.5434         | 0.4877     | 0.6139           |
| 0.7242        | 12.0  | 120  | 1.0786          | {'precision': 0.39233576642335766, 'recall': 0.5315203955500618, 'f1': 0.4514435695538058, 'number': 809}  | {'precision': 0.2926829268292683, 'recall': 0.20168067226890757, 'f1': 0.23880597014925373, 'number': 119}   | {'precision': 0.5096674400618716, 'recall': 0.6187793427230047, 'f1': 0.5589482612383375, 'number': 1065}   | 0.4504            | 0.5585         | 0.4987     | 0.6172           |
| 0.6895        | 13.0  | 130  | 1.1184          | {'precision': 0.4066427289048474, 'recall': 0.5599505562422744, 'f1': 0.4711388455538222, 'number': 809}   | {'precision': 0.2696629213483146, 'recall': 0.20168067226890757, 'f1': 0.23076923076923078, 'number': 119}   | {'precision': 0.5230125523012552, 'recall': 0.5868544600938967, 'f1': 0.5530973451327434, 'number': 1065}   | 0.4595            | 0.5529         | 0.5019     | 0.6134           |
| 0.6605        | 14.0  | 140  | 1.1015          | {'precision': 0.4114737883283877, 'recall': 0.5142150803461063, 'f1': 0.45714285714285713, 'number': 809}  | {'precision': 0.2631578947368421, 'recall': 0.21008403361344538, 'f1': 0.23364485981308414, 'number': 119}   | {'precision': 0.5068702290076336, 'recall': 0.6234741784037559, 'f1': 0.5591578947368421, 'number': 1065}   | 0.4574            | 0.5544         | 0.5012     | 0.6242           |
| 0.6498        | 15.0  | 150  | 1.1103          | {'precision': 0.4171539961013645, 'recall': 0.5290482076637825, 'f1': 0.4664850136239782, 'number': 809}   | {'precision': 0.26595744680851063, 'recall': 0.21008403361344538, 'f1': 0.23474178403755866, 'number': 119}  | {'precision': 0.5105058365758754, 'recall': 0.615962441314554, 'f1': 0.5582978723404256, 'number': 1065}    | 0.4611            | 0.5564         | 0.5043     | 0.6256           |


### Framework versions

- Transformers 4.38.1
- Pytorch 2.2.2+cu118
- Datasets 2.18.0
- Tokenizers 0.15.2