|
--- |
|
license: llama3 |
|
language: |
|
- tr |
|
|
|
--- |
|
<img src="https://huggingface.co/CerebrumTech/cere-llama-3-8b-tr/resolve/main/cere2.png" |
|
alt="CEREBRUM LLM" width="420"/> |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6639e48c27ef2d37a71eb4aa/Ds_KOVYwhRQ1FQY8S4WqO.png) |
|
|
|
# CERE V2 -LLMA-3.1-8b-TR |
|
|
|
This model is an fine-tuned version of a Llama3.1 8b Large Language Model (LLM) for Turkish. It was trained on a high quality Turkish instruction sets created from various open-source and internal resources. Turkish Instruction dataset carefully annotated to carry out Turkish instructions in an accurate and organized manner. |
|
|
|
## Model Details |
|
|
|
- **Base Model**: LLMA 3.1 8B based LLM |
|
- **Tokenizer Extension**: Specifically extended for Turkish |
|
- **Training Dataset**: Cleaned Turkish raw data with 5 billion tokens, custom Turkish instruction sets |
|
- **Training Method**: Initially with DORA, followed by fine-tuning with LORA |
|
|
|
## Benchmark Results |
|
|
|
- **Winogrande_tr**: 56.16 |
|
- **TruthfulQA_tr_v0.2**: 47.46 |
|
- **Mmlu_tr_v0.2**: 46.46 |
|
- **HellaSwag_tr_v0.2**: 48.87 |
|
- **GSM8k_tr_v0.2**: 25.43 |
|
- **Arc_tr_v0.2**: 41.97 |
|
|
|
|
|
## Usage Examples |
|
|
|
```python |
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
device = "cuda" # the device to load the model onto |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
"Cerebrum/cere-llama-3.1-8B-tr", |
|
torch_dtype="auto", |
|
device_map="auto" |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained("Cerebrum/cere-llama-3.1-8B-tr") |
|
|
|
prompt = "Python'da ekrana 'Merhaba Dünya' nasıl yazılır?" |
|
messages = [ |
|
{"role": "system", "content": "Sen, Cerebrum Tech tarafından üretilen ve verilen talimatları takip ederek en iyi cevabı üretmeye çalışan yardımcı bir yapay zekasın."}, |
|
{"role": "user", "content": prompt} |
|
] |
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
model_inputs = tokenizer([text], return_tensors="pt").to(device) |
|
|
|
generated_ids = model.generate( |
|
model_inputs.input_ids, |
|
temperature=0.3, |
|
top_k=50, |
|
top_p=0.9, |
|
max_new_tokens=512, |
|
repetition_penalty=1, |
|
) |
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
|
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
``` |