Cesar42's picture
Update README.md
bc2a45c
|
raw
history blame
2.74 kB
metadata
license: apache-2.0
datasets:
  - dair-ai/emotion
language:
  - en
metrics:
  - accuracy
tags:
  - emotion

Model

Model IA Roberta_Base_Cased entrened with dateset emotion

Model Details

Model Base: bert_base_uncased

dataset: dair-ai/emotion

Config train:

num_train_epochs= 8 learning_rate= 2e-5 weight_decay=0.01 batch_size: 64

Eval Exam

{
 'test_loss': 0.14830373227596283
 'test_accuracy': 0.9415
 'test_f1': 0.9411005763302622
 'test_runtime': 8.372
 'test_samples_per_second': 238.892
 'test_steps_per_second': 3.822
  }

How to Use the model:

from transformers import pipeline
model_path = "daveni/twitter-xlm-roberta-emotion-es"
emotion_analysis = pipeline("text-classification", framework="pt", model=model_path, tokenizer=model_path)
emotion_analysis("Einstein dijo: Solo hay dos cosas infinitas, el universo y los pinches anuncios de bitcoin en Twitter. Paren ya carajo aaaaaaghhgggghhh me quiero murir")
[{'label': 'anger', 'score': 0.48307016491889954}]

Full classification example

from transformers import AutoModelForSequenceClassification
from transformers import AutoTokenizer, AutoConfig
import numpy as np
from scipy.special import softmax
# Preprocess text (username and link placeholders)
def preprocess(text):
    new_text = []
    for t in text.split(" "):
        t = '@user' if t.startswith('@') and len(t) > 1 else t
        t = 'http' if t.startswith('http') else t
        new_text.append(t)
    return " ".join(new_text)
model_path = "Cesar42/bert-base-uncased-emotion_v2"
tokenizer = AutoTokenizer.from_pretrained(model_path )
config = AutoConfig.from_pretrained(model_path )
# PT
model = AutoModelForSequenceClassification.from_pretrained(model_path )
text = "Se ha quedao bonito día para publicar vídeo, ¿no? Hoy del tema más diferente que hemos tocado en el canal."
text = preprocess(text)
print(text)
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
scores = output[0][0].detach().numpy()
scores = softmax(scores)
# Print labels and scores
ranking = np.argsort(scores)
ranking = ranking[::-1]
for i in range(scores.shape[0]):
    l = config.id2label[ranking[i]]
    s = scores[ranking[i]]
    print(f"{i+1}) {l} {np.round(float(s), 4)}")

Output:

Se ha quedao bonito día para publicar vídeo, ¿no? Hoy del tema más diferente que hemos tocado en el canal.
1) joy 0.7887
2) others 0.1679
3) surprise 0.0152
4) sadness 0.0145
5) anger 0.0077
6) disgust 0.0033
7) fear 0.0027

Referece

  • bhadresh-savani/bert-base-uncased-emotion
  • Colab Notebook. bhadresh-savani