Cesar514 commited on
Commit
36ff20d
·
1 Parent(s): c47665b

Lunar Agent Training 1

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: -236.41 +/- 132.30
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 259.13 +/- 20.60
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4b4adc24c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4b4adc2550>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4b4adc25e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4b4adc2670>", "_build": "<function ActorCriticPolicy._build at 0x7f4b4adc2700>", "forward": "<function ActorCriticPolicy.forward at 0x7f4b4adc2790>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4b4adc2820>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4b4adc28b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4b4adc2940>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4b4adc29d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4b4adc2a60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4b4adc2af0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f4b4adc5440>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 32768, "_total_timesteps": 5000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678489855100132385, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKBoFb6/gDA/5hLxvnphjb87UII/v5e8PgAAAAAAAAAAms4yvvcinz8a7BC/dRsQv8++jD7SHwM+AAAAAAAAAACmWoo+3KOwP4fuMT+USLa+k9bqvpLepL4AAAAAAAAAAMqXjb5itT4/7VYfv5IilL9DoN29Qs64vgAAAAAAAAAAMx7UPBRvuT+vGio/l3vCPi5YAr2FeEe+AAAAAAAAAAC6rkQ/rNKVPlumrj8wHra/rG2Dv4vZL70AAAAAAAAAAFrGqD0EaC4/ztR6Phmnjr/ugLC9aBaJOAAAAAAAAAAATTZXPdVjqj9mhxg/ozHvvm6tSr2gD/u9AAAAAAAAAAAAAG05bUy2Pzhjhzx/OJ8+c3nhOTroHzwAAAAAAAAAALN2Mj/D5I0+SIiKP6bCi79aSsK/kxuEwAAAgD8AAAAADe46vk53kz8Im1e/Gic7v/zSWD5OsZw+AAAAAAAAAABTyH4/cfsAP/YQ8z+lnce/ZWoFwBonAL8AAAAAAAAAAE0cNL0wIZ8//PoPvr5mB7+NMDg+i6vXPAAAAAAAAAAA8zw3PlzjbD9qbcw+BHNHv8XpArn7dla9AAAAAAAAAAAAqYc+hft4P31VYz/P+CO/fJ8dv1ha+b4AAAAAAAAAADOaubzmOK4/YliMvuNamb6HBQw98cMEPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -5.5536, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI02pI3GOtX8CUhpRSlIwBbJRLVYwBdJRHQDXYTXarWAh1fZQoaAZoCWgPQwjf3F897vRSwJSGlFKUaBVLYWgWR0A171BdD6WPdX2UKGgGaAloD0MI3bQZp6EwccCUhpRSlGgVS0hoFkdANfHp4bCJoHV9lChoBmgJaA9DCHQjLCpi/27AlIaUUpRoFUt3aBZHQDYATcqOLix1fZQoaAZoCWgPQwgonUgw1TtZwJSGlFKUaBVLamgWR0A2CSZBsyi3dX2UKGgGaAloD0MIc6CH2jYoRsCUhpRSlGgVSzxoFkdANg4/Vy3kP3V9lChoBmgJaA9DCJvJN9vcw2PAlIaUUpRoFUt2aBZHQDYRaOgg5ip1fZQoaAZoCWgPQwgG9phI6VFgwJSGlFKUaBVLaWgWR0A2HrTH80k4dX2UKGgGaAloD0MIP+YDAh0KasCUhpRSlGgVS0doFkdANil7+kxh2HV9lChoBmgJaA9DCAq6vaSx6W3AlIaUUpRoFUtgaBZHQDYr4vexfOV1fZQoaAZoCWgPQwg2k2+2uUkgQJSGlFKUaBVLb2gWR0A2QMewLVnVdX2UKGgGaAloD0MIwsHexFC0dsCUhpRSlGgVS3doFkdANlAPNFBppXV9lChoBmgJaA9DCONrzywJgVjAlIaUUpRoFUtvaBZHQDZQS5AhStN1fZQoaAZoCWgPQwhrSUc5GOtuwJSGlFKUaBVLfWgWR0A2U86FM7EHdX2UKGgGaAloD0MIEd+JWe/CccCUhpRSlGgVS2NoFkdANlW4iHIp6XV9lChoBmgJaA9DCLyQDg9hvWXAlIaUUpRoFUtgaBZHQDZfpSrHU+d1fZQoaAZoCWgPQwgMzuDvF5dawJSGlFKUaBVLSWgWR0A2YP557gKndX2UKGgGaAloD0MILq7xmWzBY8CUhpRSlGgVS0FoFkdANmTzundfs3V9lChoBmgJaA9DCHqqQ26Gs2jAlIaUUpRoFUtbaBZHQDZl9gF5fMR1fZQoaAZoCWgPQwiIga59gQZgwJSGlFKUaBVLU2gWR0A2cOpsGgSOdX2UKGgGaAloD0MIQUZAhSMLVcCUhpRSlGgVS0RoFkdANnTPfKp1inV9lChoBmgJaA9DCKVrJt9sVV/AlIaUUpRoFUtKaBZHQDaNX5nDiwV1fZQoaAZoCWgPQwikjo6rkUZswJSGlFKUaBVLRGgWR0A2judwvQF+dX2UKGgGaAloD0MInFCIgEOCU8CUhpRSlGgVS0RoFkdANpDcdo3713V9lChoBmgJaA9DCBiw5CqWHWfAlIaUUpRoFUtlaBZHQDahjZtelbh1fZQoaAZoCWgPQwik/+VatLNfwJSGlFKUaBVLbmgWR0A2tifxtpEhdX2UKGgGaAloD0MI6MByhAy/VsCUhpRSlGgVS0poFkdANsMRL9MsYnV9lChoBmgJaA9DCOQSRx6IuGPAlIaUUpRoFUtHaBZHQDbPCZWq95B1fZQoaAZoCWgPQwg826M33NVswJSGlFKUaBVLUmgWR0A2znctXgccdX2UKGgGaAloD0MI8+fbgqWNWMCUhpRSlGgVS0toFkdANtBOLzf78HV9lChoBmgJaA9DCMHHYMUpT2HAlIaUUpRoFUtBaBZHQDbX+FUQ0411fZQoaAZoCWgPQwjMRBFSN8ljwJSGlFKUaBVLSGgWR0A23r30wrUcdX2UKGgGaAloD0MIgJnv4CfwX8CUhpRSlGgVS2ZoFkdANuop2ECeVnV9lChoBmgJaA9DCJw24zRE1X3AlIaUUpRoFUtbaBZHQDbviQ1aW5Z1fZQoaAZoCWgPQwiG6BA4Ei9awJSGlFKUaBVLQWgWR0A28eGO+7DmdX2UKGgGaAloD0MIL6LtmHrUdsCUhpRSlGgVS25oFkdANvZs0pEx7HV9lChoBmgJaA9DCJcBZylZRV3AlIaUUpRoFUuCaBZHQDcAzeoDPnl1fZQoaAZoCWgPQwiyKy0jdfhmwJSGlFKUaBVLbWgWR0A3AIdU83dcdX2UKGgGaAloD0MI1JrmHafdXsCUhpRSlGgVS0JoFkdANxTPBzmwJXV9lChoBmgJaA9DCGAjSRCu/nPAlIaUUpRoFUtkaBZHQDcVa0QbuMN1fZQoaAZoCWgPQwjWcfxQ6aFtwJSGlFKUaBVLaWgWR0A3GefI0ZWJdX2UKGgGaAloD0MIyFuufmxeO8CUhpRSlGgVS0JoFkdANxzcVQAMlXV9lChoBmgJaA9DCLX/AdYqhWTAlIaUUpRoFUtmaBZHQDch9NN8E3d1fZQoaAZoCWgPQwiJ00m2ulxWwJSGlFKUaBVLQ2gWR0A3Jj0L+glGdX2UKGgGaAloD0MINuSfGcRzNcCUhpRSlGgVS09oFkdANycp9ZzPr3V9lChoBmgJaA9DCKxwy0dS/FjAlIaUUpRoFUs9aBZHQDctg7YChex1fZQoaAZoCWgPQwjCTxxAv2ZVwJSGlFKUaBVLO2gWR0A3NSmqHXVcdX2UKGgGaAloD0MIjX+fcWE8YcCUhpRSlGgVS01oFkdANzgtJ4B3inV9lChoBmgJaA9DCLWjOEcdVWzAlIaUUpRoFUtRaBZHQDc4TL4etCB1fZQoaAZoCWgPQwjrp/+s+fNmwJSGlFKUaBVLY2gWR0A3PjdHlOoHdX2UKGgGaAloD0MIhnXj3ZFvV8CUhpRSlGgVS4FoFkdAN0WX9itq6HV9lChoBmgJaA9DCCx+U1gpiHPAlIaUUpRoFUtRaBZHQDdIYl6Z6Ut1fZQoaAZoCWgPQwg2rRQCOUVpwJSGlFKUaBVLYGgWR0A3StfoicG1dX2UKGgGaAloD0MIV5OnrGZxcMCUhpRSlGgVS3ZoFkdAN0qjafzz3HV9lChoBmgJaA9DCKg2OBH9YVjAlIaUUpRoFUs9aBZHQDdSMyad+Xt1fZQoaAZoCWgPQwhA+iZNgwtXwJSGlFKUaBVLPGgWR0A3W4L1EmY0dX2UKGgGaAloD0MI5PVgUvxmY8CUhpRSlGgVS2RoFkdAN26MNtqHoHV9lChoBmgJaA9DCMalKm3x+WnAlIaUUpRoFUtPaBZHQDd0EPlMh5h1fZQoaAZoCWgPQwg5nPnVHC1WwJSGlFKUaBVLaWgWR0A3d1hb4agmdX2UKGgGaAloD0MIJSTSNv5kb8CUhpRSlGgVS0xoFkdAN3x6v7m+03V9lChoBmgJaA9DCN9t3jjpyX7AlIaUUpRoFUtlaBZHQDeAgyM1jy51fZQoaAZoCWgPQwhUVP1KZ/VtwJSGlFKUaBVLSWgWR0A3gCPIXCTEdX2UKGgGaAloD0MIWrkXmBVbU8CUhpRSlGgVS3loFkdAN4JOWSlnAnV9lChoBmgJaA9DCKK1os1xuF/AlIaUUpRoFUtVaBZHQDeFPpIMBp51fZQoaAZoCWgPQwjGbTSAt2NawJSGlFKUaBVLRmgWR0A3hXJo0ygxdX2UKGgGaAloD0MIpOAp5EoeXcCUhpRSlGgVS3toFkdAN5AvpQk5ZXV9lChoBmgJaA9DCNYCe0ykL1DAlIaUUpRoFUtaaBZHQDeZWhh6Skl1fZQoaAZoCWgPQwiLpUi+EsthwJSGlFKUaBVLV2gWR0A3oYKpkwvhdX2UKGgGaAloD0MIzhlR2lukfcCUhpRSlGgVS3hoFkdAN6GphnanJnV9lChoBmgJaA9DCA9eu7ThkFLAlIaUUpRoFUtBaBZHQDepzjm0VrR1fZQoaAZoCWgPQwgzpIriVR9lwJSGlFKUaBVLbmgWR0A3rYukDZDidX2UKGgGaAloD0MIFyr/Wt4KbcCUhpRSlGgVS3doFkdAN7WR7qptJnV9lChoBmgJaA9DCBNgWP78uGDAlIaUUpRoFUtoaBZHQDe5n003wTd1fZQoaAZoCWgPQwjRd7eyBCxxwJSGlFKUaBVLV2gWR0A3zyQPqcEvdX2UKGgGaAloD0MIB35Uw35oW8CUhpRSlGgVS2toFkdAN9f5LytmtnV9lChoBmgJaA9DCBpqFJJMNXHAlIaUUpRoFUtQaBZHQDfbh4t6HCZ1fZQoaAZoCWgPQwjdzr7yoDJrwJSGlFKUaBVLXmgWR0A33T72tdRjdX2UKGgGaAloD0MICwkYXR4Me8CUhpRSlGgVS3doFkdAN+bFn7Hhj3V9lChoBmgJaA9DCP+z5sdfjVjAlIaUUpRoFUtzaBZHQDfr8Muvllt1fZQoaAZoCWgPQwiYUMHhBXtQwJSGlFKUaBVLVmgWR0A368MNMGordX2UKGgGaAloD0MIFFysqMF4TMCUhpRSlGgVS0VoFkdAN/CxJNCZ4XV9lChoBmgJaA9DCP8gkiGHaHHAlIaUUpRoFUt7aBZHQDfwVqN6w+t1fZQoaAZoCWgPQwidEDrokiRgwJSGlFKUaBVLWWgWR0A39pAUtZmqdX2UKGgGaAloD0MISino9pJQdcCUhpRSlGgVS4FoFkdAN/r1uivgWXV9lChoBmgJaA9DCCu/DMaIUlbAlIaUUpRoFUtWaBZHQDf8Nz8xbjd1fZQoaAZoCWgPQwg1m8dhMBtmwJSGlFKUaBVLRmgWR0A3/g2606YFdX2UKGgGaAloD0MInnx6bMtdYsCUhpRSlGgVS05oFkdAOAEhV2iconV9lChoBmgJaA9DCB0EHa1qd3PAlIaUUpRoFUuGaBZHQDgDFR51Ng11fZQoaAZoCWgPQwiySumZXo1UwJSGlFKUaBVLPmgWR0A4IN5dGAkLdX2UKGgGaAloD0MIylLr/Ub5VMCUhpRSlGgVS0xoFkdAOCTMJQcghnV9lChoBmgJaA9DCDDxR1Fnl2/AlIaUUpRoFUtRaBZHQDgk2rGR3eN1fZQoaAZoCWgPQwi5wVCHFWVawJSGlFKUaBVLPmgWR0A4JigTRIBjdX2UKGgGaAloD0MI3T8WosN1csCUhpRSlGgVS19oFkdAOCuw9q1w53V9lChoBmgJaA9DCHpvDAHAImHAlIaUUpRoFUuRaBZHQDgrZzxPO6d1fZQoaAZoCWgPQwgsmzkkteRnwJSGlFKUaBVLQGgWR0A4MmqHXVbzdX2UKGgGaAloD0MIaW/whcm7WsCUhpRSlGgVSz9oFkdAODkSyt3fRHV9lChoBmgJaA9DCA1uawsPE3TAlIaUUpRoFUthaBZHQDhGgxrSE151fZQoaAZoCWgPQwiVu8/xkWlzwJSGlFKUaBVLXGgWR0A4RgNgBtDVdX2UKGgGaAloD0MIhGOWPckscMCUhpRSlGgVS05oFkdAOEwbEP1+RnV9lChoBmgJaA9DCB4YQPhQ61TAlIaUUpRoFUt5aBZHQDhNcVxjriV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 8, "n_steps": 2048, "gamma": 0.9995, "gae_lambda": 0.985, "ent_coef": 0.015, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4b4adc24c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4b4adc2550>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4b4adc25e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4b4adc2670>", "_build": "<function ActorCriticPolicy._build at 0x7f4b4adc2700>", "forward": "<function ActorCriticPolicy.forward at 0x7f4b4adc2790>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4b4adc2820>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4b4adc28b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4b4adc2940>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4b4adc29d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4b4adc2a60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4b4adc2af0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f4b4adc5440>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678490028249909198, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAID0Ir1cdyK6l/sxugB56zMkLhS7YvlPOQAAgD8AAIA/syxNPUghgbrFin+6vGEPttXeFzs/u5E5AACAPwAAgD9N74a9LKCYPN4H0TtERnS+FAUXvnbyx70AAAAAAAAAAACMJLwpsF26ClXdOWaOy7Mh0SE6Az78uAAAgD8AAIA/diGAPgpDkT8FPJo+yfcFv0MvsT5uIVg8AAAAAAAAAACaQKa8qJ6nPZ7EKbtiI+K9Qebnvfbh67sAAAAAAAAAAACoNL1xHX25/2wduvdjWbWbKzE7E7Q3OQAAgD8AAIA/TbczPY+yV7qdK+C6ifDBtDAUbLu6PQI6AACAPwAAgD9a1Ja9YxxdP8oGBT2q/7u+uSBvvWVz6joAAAAAAAAAALNVhj320B26wIBwOuuWBDZ8fCE7o3CKuQAAgD8AAIA/mqkovMO5GLoJEzs7H9HiN9kGZjqYL/m5AACAPwAAgD/NdJw7KVxsunOdXLuQ/hW3CZ0aO/4tfzoAAIA/AACAPwAkZz3DBQy6oGxeN0CE3bFDSw27H7mBtgAAgD8AAIA/gCoyvajr4j5BZQm9apeXvj8Cs71OCKC8AAAAAAAAAACaS9O8w90kuthwnjp7hRo2pBtyO1oYubkAAIA/AACAP2bFzrwUEIi6GoWXNHGC7S9MxpO4jZNiswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIv56vWS6AUUCUhpRSlIwBbJRLtIwBdJRHQJk9bgTAWSF1fZQoaAZoCWgPQwgKgse3d80GQJSGlFKUaBVL1mgWR0CZQhBeHBUJdX2UKGgGaAloD0MIPiXnxJ7SZUCUhpRSlGgVTegDaBZHQJlEdXaJyhl1fZQoaAZoCWgPQwhagLbVLKVjQJSGlFKUaBVN6ANoFkdAmUSzn7pFC3V9lChoBmgJaA9DCGxfQC9ckmBAlIaUUpRoFU3oA2gWR0CZRR05lvqDdX2UKGgGaAloD0MIEHS0qqXcYkCUhpRSlGgVTegDaBZHQJlNduejEeh1fZQoaAZoCWgPQwjTTzi7NZVjQJSGlFKUaBVN6ANoFkdAmVDT5O8CgnV9lChoBmgJaA9DCP8Iw4AlQGBAlIaUUpRoFU3oA2gWR0CZUoDQZ4wAdX2UKGgGaAloD0MIw0gvanfvY0CUhpRSlGgVTegDaBZHQJlcRg1FYuF1fZQoaAZoCWgPQwiOzvkpjl9hQJSGlFKUaBVN6ANoFkdAmVxLXYlIE3V9lChoBmgJaA9DCC82rRQC0mFAlIaUUpRoFU3oA2gWR0CZYuy/sVtXdX2UKGgGaAloD0MISN+kaVCuZECUhpRSlGgVTegDaBZHQJlrrBdld1N1fZQoaAZoCWgPQwhS8X9HVDxjQJSGlFKUaBVN6ANoFkdAmWvxuXNTtXV9lChoBmgJaA9DCCfcK/NWRTRAlIaUUpRoFUvdaBZHQJl1aY1He8B1fZQoaAZoCWgPQwhzSGqh5B1pQJSGlFKUaBVN6ANoFkdAmX4G5DqnnHV9lChoBmgJaA9DCPd4IR0ea2FAlIaUUpRoFU3oA2gWR0CZfuQgs9SudX2UKGgGaAloD0MIR8oWSbu9U0CUhpRSlGgVS5toFkdAmYKzgZTAFnV9lChoBmgJaA9DCMwMG2X9n2BAlIaUUpRoFU3oA2gWR0CZiDe6qbSadX2UKGgGaAloD0MIjZYDPVSvY0CUhpRSlGgVTegDaBZHQJmIRs+FDfF1fZQoaAZoCWgPQwjhYG9iyGJiQJSGlFKUaBVN6ANoFkdAmYsDQZ4wAXV9lChoBmgJaA9DCOKPos7cfmVAlIaUUpRoFU3oA2gWR0CZjGpD/lySdX2UKGgGaAloD0MINnhflYvhYUCUhpRSlGgVTegDaBZHQJmMkit7rs11fZQoaAZoCWgPQwg3p5IBIKRlQJSGlFKUaBVN6ANoFkdAmYzHljmSyXV9lChoBmgJaA9DCEz8UdQZ9mdAlIaUUpRoFU3oA2gWR0CZkevJzT4MdX2UKGgGaAloD0MIvOZVnVWKZECUhpRSlGgVTegDaBZHQJmUtz1bqyJ1fZQoaAZoCWgPQwgGZK93/19kQJSGlFKUaBVN6ANoFkdAmZY9xyXD33V9lChoBmgJaA9DCBNHHoisZ2JAlIaUUpRoFU3oA2gWR0CZnx0w8GLUdX2UKGgGaAloD0MIdcqjG+FyZECUhpRSlGgVTegDaBZHQJmfI5T6zmh1fZQoaAZoCWgPQwgxJZLoZaJiQJSGlFKUaBVN6ANoFkdAmakYb4rSVnV9lChoBmgJaA9DCEWeJF0z119AlIaUUpRoFU3oA2gWR0CZqUUMXrMUdX2UKGgGaAloD0MIvyzt1FzwaUCUhpRSlGgVTegDaBZHQJm4tQfp2U11fZQoaAZoCWgPQwgJjPUNzLdiQJSGlFKUaBVN6ANoFkdAmbmRjWkJr3V9lChoBmgJaA9DCA/vObCcKWhAlIaUUpRoFU3oA2gWR0CZvV6CDmKZdX2UKGgGaAloD0MI5ssLsA82ZkCUhpRSlGgVTegDaBZHQJoWmaScLBt1fZQoaAZoCWgPQwhDrtSzIF1kQJSGlFKUaBVN6ANoFkdAmhao0qH45HV9lChoBmgJaA9DCGwm32xzDmRAlIaUUpRoFU3oA2gWR0CaGW0dBBzFdX2UKGgGaAloD0MIPIVcqeenZECUhpRSlGgVTegDaBZHQJoat+9alk91fZQoaAZoCWgPQwgyrOKNzPZiQJSGlFKUaBVN6ANoFkdAmhrZZntfHHV9lChoBmgJaA9DCI/k8h/SdGJAlIaUUpRoFU3oA2gWR0CaGw/FirksdX2UKGgGaAloD0MIHmtGBrkzYkCUhpRSlGgVTegDaBZHQJogHpOerdZ1fZQoaAZoCWgPQwgZrg6AOEpnQJSGlFKUaBVN6ANoFkdAmiLZG8VYZHV9lChoBmgJaA9DCIeowp/htWRAlIaUUpRoFU3oA2gWR0CaJEpqASWadX2UKGgGaAloD0MIdA0zNJ70YECUhpRSlGgVTegDaBZHQJowfq6e5Fx1fZQoaAZoCWgPQwg0aVN1jyZkQJSGlFKUaBVN6ANoFkdAmjCHaBZpz3V9lChoBmgJaA9DCBPzrKQVEFBAlIaUUpRoFUvnaBZHQJozz8Kohpx1fZQoaAZoCWgPQwj/Qo8Yvb5nQJSGlFKUaBVN6ANoFkdAmjyHcQAdXHV9lChoBmgJaA9DCLQDrivmbGNAlIaUUpRoFU3oA2gWR0CaPLPOIInjdX2UKGgGaAloD0MIbatZZ/wVYECUhpRSlGgVTegDaBZHQJpJKeqaPS51fZQoaAZoCWgPQwjWUkDafwxoQJSGlFKUaBVN6ANoFkdAmkm7W/ag3HV9lChoBmgJaA9DCBk8TPtmeGdAlIaUUpRoFU3oA2gWR0CaTC4cWCVbdX2UKGgGaAloD0MICTVDqijxZECUhpRSlGgVTegDaBZHQJpQK8AaNuN1fZQoaAZoCWgPQwjjGp/J/nlfQJSGlFKUaBVN6ANoFkdAmlA/4yoGZHV9lChoBmgJaA9DCHR7SWM0fGFAlIaUUpRoFU3oA2gWR0CaUxkX1rZbdX2UKGgGaAloD0MInIcTmM50Y0CUhpRSlGgVTegDaBZHQJpUf4fwI+p1fZQoaAZoCWgPQwgTukviLAVgQJSGlFKUaBVN6ANoFkdAmlSliKBNEnV9lChoBmgJaA9DCAt+G2K8+V5AlIaUUpRoFU3oA2gWR0CaVNtITXardX2UKGgGaAloD0MI/kgRGVbLYkCUhpRSlGgVTegDaBZHQJpaiqcVgx91fZQoaAZoCWgPQwjrq6sCNXpgQJSGlFKUaBVN6ANoFkdAml817x/d7HV9lChoBmgJaA9DCIm3zr9dk2ZAlIaUUpRoFU3oA2gWR0Caa35oXbdrdX2UKGgGaAloD0MIxmmIKvxZX0CUhpRSlGgVTegDaBZHQJprh5D7ZWd1fZQoaAZoCWgPQwhbCkj7n1VgQJSGlFKUaBVN6ANoFkdAmm8PNqxkd3V9lChoBmgJaA9DCOEoeXWOV2hAlIaUUpRoFU3oA2gWR0CaeB4FRpDedX2UKGgGaAloD0MIqIsUysJoZUCUhpRSlGgVTegDaBZHQJp4Soo/iYN1fZQoaAZoCWgPQwjL9baZillhQJSGlFKUaBVN6ANoFkdAmoTUAo5PuXV9lChoBmgJaA9DCCf5Eb/i6GRAlIaUUpRoFU3oA2gWR0CahXE/B3zMdX2UKGgGaAloD0MIbhea67SkY0CUhpRSlGgVTegDaBZHQJqIRKIznA91fZQoaAZoCWgPQwjYRdEDn3BoQJSGlFKUaBVN6ANoFkdAmozJQHiWFHV9lChoBmgJaA9DCNi61Ah9GGdAlIaUUpRoFU3oA2gWR0CajNk/KQq7dX2UKGgGaAloD0MI5WGh1rTiZkCUhpRSlGgVTegDaBZHQJro2LS/j811fZQoaAZoCWgPQwgWp1oLs8hgQJSGlFKUaBVN6ANoFkdAmupeFYdQwnV9lChoBmgJaA9DCMJQhxVuQWlAlIaUUpRoFU3oA2gWR0Ca6odAxBVudX2UKGgGaAloD0MIQndJnBWqYECUhpRSlGgVTegDaBZHQJrqw+TvAoJ1fZQoaAZoCWgPQwhTd2UXjEpjQJSGlFKUaBVN6ANoFkdAmvDKqGUOeHV9lChoBmgJaA9DCGTnbWz2L2VAlIaUUpRoFU3oA2gWR0Ca9Yju8brDdX2UKGgGaAloD0MI8WjjiLVuYUCUhpRSlGgVTegDaBZHQJr+dj7Q9id1fZQoaAZoCWgPQwi6wOWx5rZmQJSGlFKUaBVN6ANoFkdAmv56q0dBB3V9lChoBmgJaA9DCGiR7Xy/pWhAlIaUUpRoFU3oA2gWR0CbANC5mRNidX2UKGgGaAloD0MIEVSNXg2bZ0CUhpRSlGgVTegDaBZHQJsIWhufmLd1fZQoaAZoCWgPQwjBqQ8kb6RiQJSGlFKUaBVN6ANoFkdAmwiGVE/jbXV9lChoBmgJaA9DCEM6PITxqmdAlIaUUpRoFU3oA2gWR0CbF58F6iTMdX2UKGgGaAloD0MIQ8nk1M57ZECUhpRSlGgVTegDaBZHQJsYgF9roGJ1fZQoaAZoCWgPQwjwFd16TQ1jQJSGlFKUaBVN6ANoFkdAmxyGp6yB1HV9lChoBmgJaA9DCCnqzD0kHGdAlIaUUpRoFU3oA2gWR0CbIxKiwjdIdX2UKGgGaAloD0MIPpKSHgbAaUCUhpRSlGgVTegDaBZHQJsjKvB7/n51fZQoaAZoCWgPQwiInL6eL3ZhQJSGlFKUaBVN6ANoFkdAmya8kIHC43V9lChoBmgJaA9DCOs2qP1WZ2VAlIaUUpRoFU3oA2gWR0CbKB/VRUFTdX2UKGgGaAloD0MIDtsWZbYHaECUhpRSlGgVTegDaBZHQJsoRqk/KQt1fZQoaAZoCWgPQwi/DwcJUUZnQJSGlFKUaBVN6ANoFkdAmyiCMglniHV9lChoBmgJaA9DCOJyvALRamdAlIaUUpRoFU3oA2gWR0CbLnfTkQwsdX2UKGgGaAloD0MIEvbtJKJhYUCUhpRSlGgVTegDaBZHQJszG8rZrYZ1fZQoaAZoCWgPQwhat0Htt7tlQJSGlFKUaBVN6ANoFkdAmzxLH2h7FHV9lChoBmgJaA9DCBGMg0tHx2NAlIaUUpRoFU3oA2gWR0CbPE/W1+iKdX2UKGgGaAloD0MIdsHgmjsTZECUhpRSlGgVTegDaBZHQJs+ytozvZ11fZQoaAZoCWgPQwgceLXcmRVhQJSGlFKUaBVN6ANoFkdAm0ZV6Vt4zXV9lChoBmgJaA9DCL8LW7OVXWRAlIaUUpRoFU3oA2gWR0CbRocCYCyRdX2UKGgGaAloD0MIhEnx8Qk7ZUCUhpRSlGgVTegDaBZHQJtWG58Sf191fZQoaAZoCWgPQwhQU8vWevJgQJSGlFKUaBVN6ANoFkdAm1cDR6Ww/3V9lChoBmgJaA9DCNxnlZlSUmRAlIaUUpRoFU3oA2gWR0CbWuqQA+6idX2UKGgGaAloD0MIPrK5ah4GZECUhpRSlGgVTegDaBZHQJthCLaVUuN1fZQoaAZoCWgPQwgxmSoYlatkQJSGlFKUaBVN6ANoFkdAm2EZU5uIh3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 256, "n_steps": 2048, "gamma": 0.9995, "gae_lambda": 0.985, "ent_coef": 0.015, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
ppo-LunarLander-v2312.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0b5fb469dfd4d1ddaa2e37786bc40e3778cfd57f3bf74c09f10002c8d0abdfc8
3
- size 147279
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:907196584013a72a69b24dfe240db1f55f883d68bd5009f606fe758b2ee2d0fb
3
+ size 147428
ppo-LunarLander-v2312/data CHANGED
@@ -43,12 +43,12 @@
43
  "_np_random": null
44
  },
45
  "n_envs": 16,
46
- "num_timesteps": 32768,
47
- "_total_timesteps": 5000,
48
  "_num_timesteps_at_start": 0,
49
  "seed": null,
50
  "action_noise": null,
51
- "start_time": 1678489855100132385,
52
  "learning_rate": 0.0003,
53
  "tensorboard_log": null,
54
  "lr_schedule": {
@@ -57,7 +57,7 @@
57
  },
58
  "_last_obs": {
59
  ":type:": "<class 'numpy.ndarray'>",
60
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKBoFb6/gDA/5hLxvnphjb87UII/v5e8PgAAAAAAAAAAms4yvvcinz8a7BC/dRsQv8++jD7SHwM+AAAAAAAAAACmWoo+3KOwP4fuMT+USLa+k9bqvpLepL4AAAAAAAAAAMqXjb5itT4/7VYfv5IilL9DoN29Qs64vgAAAAAAAAAAMx7UPBRvuT+vGio/l3vCPi5YAr2FeEe+AAAAAAAAAAC6rkQ/rNKVPlumrj8wHra/rG2Dv4vZL70AAAAAAAAAAFrGqD0EaC4/ztR6Phmnjr/ugLC9aBaJOAAAAAAAAAAATTZXPdVjqj9mhxg/ozHvvm6tSr2gD/u9AAAAAAAAAAAAAG05bUy2Pzhjhzx/OJ8+c3nhOTroHzwAAAAAAAAAALN2Mj/D5I0+SIiKP6bCi79aSsK/kxuEwAAAgD8AAAAADe46vk53kz8Im1e/Gic7v/zSWD5OsZw+AAAAAAAAAABTyH4/cfsAP/YQ8z+lnce/ZWoFwBonAL8AAAAAAAAAAE0cNL0wIZ8//PoPvr5mB7+NMDg+i6vXPAAAAAAAAAAA8zw3PlzjbD9qbcw+BHNHv8XpArn7dla9AAAAAAAAAAAAqYc+hft4P31VYz/P+CO/fJ8dv1ha+b4AAAAAAAAAADOaubzmOK4/YliMvuNamb6HBQw98cMEPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
  },
62
  "_last_episode_starts": {
63
  ":type:": "<class 'numpy.ndarray'>",
@@ -67,16 +67,16 @@
67
  "_episode_num": 0,
68
  "use_sde": false,
69
  "sde_sample_freq": -1,
70
- "_current_progress_remaining": -5.5536,
71
  "ep_info_buffer": {
72
  ":type:": "<class 'collections.deque'>",
73
- ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI02pI3GOtX8CUhpRSlIwBbJRLVYwBdJRHQDXYTXarWAh1fZQoaAZoCWgPQwjf3F897vRSwJSGlFKUaBVLYWgWR0A171BdD6WPdX2UKGgGaAloD0MI3bQZp6EwccCUhpRSlGgVS0hoFkdANfHp4bCJoHV9lChoBmgJaA9DCHQjLCpi/27AlIaUUpRoFUt3aBZHQDYATcqOLix1fZQoaAZoCWgPQwgonUgw1TtZwJSGlFKUaBVLamgWR0A2CSZBsyi3dX2UKGgGaAloD0MIc6CH2jYoRsCUhpRSlGgVSzxoFkdANg4/Vy3kP3V9lChoBmgJaA9DCJvJN9vcw2PAlIaUUpRoFUt2aBZHQDYRaOgg5ip1fZQoaAZoCWgPQwgG9phI6VFgwJSGlFKUaBVLaWgWR0A2HrTH80k4dX2UKGgGaAloD0MIP+YDAh0KasCUhpRSlGgVS0doFkdANil7+kxh2HV9lChoBmgJaA9DCAq6vaSx6W3AlIaUUpRoFUtgaBZHQDYr4vexfOV1fZQoaAZoCWgPQwg2k2+2uUkgQJSGlFKUaBVLb2gWR0A2QMewLVnVdX2UKGgGaAloD0MIwsHexFC0dsCUhpRSlGgVS3doFkdANlAPNFBppXV9lChoBmgJaA9DCONrzywJgVjAlIaUUpRoFUtvaBZHQDZQS5AhStN1fZQoaAZoCWgPQwhrSUc5GOtuwJSGlFKUaBVLfWgWR0A2U86FM7EHdX2UKGgGaAloD0MIEd+JWe/CccCUhpRSlGgVS2NoFkdANlW4iHIp6XV9lChoBmgJaA9DCLyQDg9hvWXAlIaUUpRoFUtgaBZHQDZfpSrHU+d1fZQoaAZoCWgPQwgMzuDvF5dawJSGlFKUaBVLSWgWR0A2YP557gKndX2UKGgGaAloD0MILq7xmWzBY8CUhpRSlGgVS0FoFkdANmTzundfs3V9lChoBmgJaA9DCHqqQ26Gs2jAlIaUUpRoFUtbaBZHQDZl9gF5fMR1fZQoaAZoCWgPQwiIga59gQZgwJSGlFKUaBVLU2gWR0A2cOpsGgSOdX2UKGgGaAloD0MIQUZAhSMLVcCUhpRSlGgVS0RoFkdANnTPfKp1inV9lChoBmgJaA9DCKVrJt9sVV/AlIaUUpRoFUtKaBZHQDaNX5nDiwV1fZQoaAZoCWgPQwikjo6rkUZswJSGlFKUaBVLRGgWR0A2judwvQF+dX2UKGgGaAloD0MInFCIgEOCU8CUhpRSlGgVS0RoFkdANpDcdo3713V9lChoBmgJaA9DCBiw5CqWHWfAlIaUUpRoFUtlaBZHQDahjZtelbh1fZQoaAZoCWgPQwik/+VatLNfwJSGlFKUaBVLbmgWR0A2tifxtpEhdX2UKGgGaAloD0MI6MByhAy/VsCUhpRSlGgVS0poFkdANsMRL9MsYnV9lChoBmgJaA9DCOQSRx6IuGPAlIaUUpRoFUtHaBZHQDbPCZWq95B1fZQoaAZoCWgPQwg826M33NVswJSGlFKUaBVLUmgWR0A2znctXgccdX2UKGgGaAloD0MI8+fbgqWNWMCUhpRSlGgVS0toFkdANtBOLzf78HV9lChoBmgJaA9DCMHHYMUpT2HAlIaUUpRoFUtBaBZHQDbX+FUQ0411fZQoaAZoCWgPQwjMRBFSN8ljwJSGlFKUaBVLSGgWR0A23r30wrUcdX2UKGgGaAloD0MIgJnv4CfwX8CUhpRSlGgVS2ZoFkdANuop2ECeVnV9lChoBmgJaA9DCJw24zRE1X3AlIaUUpRoFUtbaBZHQDbviQ1aW5Z1fZQoaAZoCWgPQwiG6BA4Ei9awJSGlFKUaBVLQWgWR0A28eGO+7DmdX2UKGgGaAloD0MIL6LtmHrUdsCUhpRSlGgVS25oFkdANvZs0pEx7HV9lChoBmgJaA9DCJcBZylZRV3AlIaUUpRoFUuCaBZHQDcAzeoDPnl1fZQoaAZoCWgPQwiyKy0jdfhmwJSGlFKUaBVLbWgWR0A3AIdU83dcdX2UKGgGaAloD0MI1JrmHafdXsCUhpRSlGgVS0JoFkdANxTPBzmwJXV9lChoBmgJaA9DCGAjSRCu/nPAlIaUUpRoFUtkaBZHQDcVa0QbuMN1fZQoaAZoCWgPQwjWcfxQ6aFtwJSGlFKUaBVLaWgWR0A3GefI0ZWJdX2UKGgGaAloD0MIyFuufmxeO8CUhpRSlGgVS0JoFkdANxzcVQAMlXV9lChoBmgJaA9DCLX/AdYqhWTAlIaUUpRoFUtmaBZHQDch9NN8E3d1fZQoaAZoCWgPQwiJ00m2ulxWwJSGlFKUaBVLQ2gWR0A3Jj0L+glGdX2UKGgGaAloD0MINuSfGcRzNcCUhpRSlGgVS09oFkdANycp9ZzPr3V9lChoBmgJaA9DCKxwy0dS/FjAlIaUUpRoFUs9aBZHQDctg7YChex1fZQoaAZoCWgPQwjCTxxAv2ZVwJSGlFKUaBVLO2gWR0A3NSmqHXVcdX2UKGgGaAloD0MIjX+fcWE8YcCUhpRSlGgVS01oFkdANzgtJ4B3inV9lChoBmgJaA9DCLWjOEcdVWzAlIaUUpRoFUtRaBZHQDc4TL4etCB1fZQoaAZoCWgPQwjrp/+s+fNmwJSGlFKUaBVLY2gWR0A3PjdHlOoHdX2UKGgGaAloD0MIhnXj3ZFvV8CUhpRSlGgVS4FoFkdAN0WX9itq6HV9lChoBmgJaA9DCCx+U1gpiHPAlIaUUpRoFUtRaBZHQDdIYl6Z6Ut1fZQoaAZoCWgPQwg2rRQCOUVpwJSGlFKUaBVLYGgWR0A3StfoicG1dX2UKGgGaAloD0MIV5OnrGZxcMCUhpRSlGgVS3ZoFkdAN0qjafzz3HV9lChoBmgJaA9DCKg2OBH9YVjAlIaUUpRoFUs9aBZHQDdSMyad+Xt1fZQoaAZoCWgPQwhA+iZNgwtXwJSGlFKUaBVLPGgWR0A3W4L1EmY0dX2UKGgGaAloD0MI5PVgUvxmY8CUhpRSlGgVS2RoFkdAN26MNtqHoHV9lChoBmgJaA9DCMalKm3x+WnAlIaUUpRoFUtPaBZHQDd0EPlMh5h1fZQoaAZoCWgPQwg5nPnVHC1WwJSGlFKUaBVLaWgWR0A3d1hb4agmdX2UKGgGaAloD0MIJSTSNv5kb8CUhpRSlGgVS0xoFkdAN3x6v7m+03V9lChoBmgJaA9DCN9t3jjpyX7AlIaUUpRoFUtlaBZHQDeAgyM1jy51fZQoaAZoCWgPQwhUVP1KZ/VtwJSGlFKUaBVLSWgWR0A3gCPIXCTEdX2UKGgGaAloD0MIWrkXmBVbU8CUhpRSlGgVS3loFkdAN4JOWSlnAnV9lChoBmgJaA9DCKK1os1xuF/AlIaUUpRoFUtVaBZHQDeFPpIMBp51fZQoaAZoCWgPQwjGbTSAt2NawJSGlFKUaBVLRmgWR0A3hXJo0ygxdX2UKGgGaAloD0MIpOAp5EoeXcCUhpRSlGgVS3toFkdAN5AvpQk5ZXV9lChoBmgJaA9DCNYCe0ykL1DAlIaUUpRoFUtaaBZHQDeZWhh6Skl1fZQoaAZoCWgPQwiLpUi+EsthwJSGlFKUaBVLV2gWR0A3oYKpkwvhdX2UKGgGaAloD0MIzhlR2lukfcCUhpRSlGgVS3hoFkdAN6GphnanJnV9lChoBmgJaA9DCA9eu7ThkFLAlIaUUpRoFUtBaBZHQDepzjm0VrR1fZQoaAZoCWgPQwgzpIriVR9lwJSGlFKUaBVLbmgWR0A3rYukDZDidX2UKGgGaAloD0MIFyr/Wt4KbcCUhpRSlGgVS3doFkdAN7WR7qptJnV9lChoBmgJaA9DCBNgWP78uGDAlIaUUpRoFUtoaBZHQDe5n003wTd1fZQoaAZoCWgPQwjRd7eyBCxxwJSGlFKUaBVLV2gWR0A3zyQPqcEvdX2UKGgGaAloD0MIB35Uw35oW8CUhpRSlGgVS2toFkdAN9f5LytmtnV9lChoBmgJaA9DCBpqFJJMNXHAlIaUUpRoFUtQaBZHQDfbh4t6HCZ1fZQoaAZoCWgPQwjdzr7yoDJrwJSGlFKUaBVLXmgWR0A33T72tdRjdX2UKGgGaAloD0MICwkYXR4Me8CUhpRSlGgVS3doFkdAN+bFn7Hhj3V9lChoBmgJaA9DCP+z5sdfjVjAlIaUUpRoFUtzaBZHQDfr8Muvllt1fZQoaAZoCWgPQwiYUMHhBXtQwJSGlFKUaBVLVmgWR0A368MNMGordX2UKGgGaAloD0MIFFysqMF4TMCUhpRSlGgVS0VoFkdAN/CxJNCZ4XV9lChoBmgJaA9DCP8gkiGHaHHAlIaUUpRoFUt7aBZHQDfwVqN6w+t1fZQoaAZoCWgPQwidEDrokiRgwJSGlFKUaBVLWWgWR0A39pAUtZmqdX2UKGgGaAloD0MISino9pJQdcCUhpRSlGgVS4FoFkdAN/r1uivgWXV9lChoBmgJaA9DCCu/DMaIUlbAlIaUUpRoFUtWaBZHQDf8Nz8xbjd1fZQoaAZoCWgPQwg1m8dhMBtmwJSGlFKUaBVLRmgWR0A3/g2606YFdX2UKGgGaAloD0MInnx6bMtdYsCUhpRSlGgVS05oFkdAOAEhV2iconV9lChoBmgJaA9DCB0EHa1qd3PAlIaUUpRoFUuGaBZHQDgDFR51Ng11fZQoaAZoCWgPQwiySumZXo1UwJSGlFKUaBVLPmgWR0A4IN5dGAkLdX2UKGgGaAloD0MIylLr/Ub5VMCUhpRSlGgVS0xoFkdAOCTMJQcghnV9lChoBmgJaA9DCDDxR1Fnl2/AlIaUUpRoFUtRaBZHQDgk2rGR3eN1fZQoaAZoCWgPQwi5wVCHFWVawJSGlFKUaBVLPmgWR0A4JigTRIBjdX2UKGgGaAloD0MI3T8WosN1csCUhpRSlGgVS19oFkdAOCuw9q1w53V9lChoBmgJaA9DCHpvDAHAImHAlIaUUpRoFUuRaBZHQDgrZzxPO6d1fZQoaAZoCWgPQwgsmzkkteRnwJSGlFKUaBVLQGgWR0A4MmqHXVbzdX2UKGgGaAloD0MIaW/whcm7WsCUhpRSlGgVSz9oFkdAODkSyt3fRHV9lChoBmgJaA9DCA1uawsPE3TAlIaUUpRoFUthaBZHQDhGgxrSE151fZQoaAZoCWgPQwiVu8/xkWlzwJSGlFKUaBVLXGgWR0A4RgNgBtDVdX2UKGgGaAloD0MIhGOWPckscMCUhpRSlGgVS05oFkdAOEwbEP1+RnV9lChoBmgJaA9DCB4YQPhQ61TAlIaUUpRoFUt5aBZHQDhNcVxjriV1ZS4="
74
  },
75
  "ep_success_buffer": {
76
  ":type:": "<class 'collections.deque'>",
77
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
  },
79
- "_n_updates": 8,
80
  "n_steps": 2048,
81
  "gamma": 0.9995,
82
  "gae_lambda": 0.985,
 
43
  "_np_random": null
44
  },
45
  "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
  "_num_timesteps_at_start": 0,
49
  "seed": null,
50
  "action_noise": null,
51
+ "start_time": 1678490028249909198,
52
  "learning_rate": 0.0003,
53
  "tensorboard_log": null,
54
  "lr_schedule": {
 
57
  },
58
  "_last_obs": {
59
  ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAID0Ir1cdyK6l/sxugB56zMkLhS7YvlPOQAAgD8AAIA/syxNPUghgbrFin+6vGEPttXeFzs/u5E5AACAPwAAgD9N74a9LKCYPN4H0TtERnS+FAUXvnbyx70AAAAAAAAAAACMJLwpsF26ClXdOWaOy7Mh0SE6Az78uAAAgD8AAIA/diGAPgpDkT8FPJo+yfcFv0MvsT5uIVg8AAAAAAAAAACaQKa8qJ6nPZ7EKbtiI+K9Qebnvfbh67sAAAAAAAAAAACoNL1xHX25/2wduvdjWbWbKzE7E7Q3OQAAgD8AAIA/TbczPY+yV7qdK+C6ifDBtDAUbLu6PQI6AACAPwAAgD9a1Ja9YxxdP8oGBT2q/7u+uSBvvWVz6joAAAAAAAAAALNVhj320B26wIBwOuuWBDZ8fCE7o3CKuQAAgD8AAIA/mqkovMO5GLoJEzs7H9HiN9kGZjqYL/m5AACAPwAAgD/NdJw7KVxsunOdXLuQ/hW3CZ0aO/4tfzoAAIA/AACAPwAkZz3DBQy6oGxeN0CE3bFDSw27H7mBtgAAgD8AAIA/gCoyvajr4j5BZQm9apeXvj8Cs71OCKC8AAAAAAAAAACaS9O8w90kuthwnjp7hRo2pBtyO1oYubkAAIA/AACAP2bFzrwUEIi6GoWXNHGC7S9MxpO4jZNiswAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
  },
62
  "_last_episode_starts": {
63
  ":type:": "<class 'numpy.ndarray'>",
 
67
  "_episode_num": 0,
68
  "use_sde": false,
69
  "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
  "ep_info_buffer": {
72
  ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIv56vWS6AUUCUhpRSlIwBbJRLtIwBdJRHQJk9bgTAWSF1fZQoaAZoCWgPQwgKgse3d80GQJSGlFKUaBVL1mgWR0CZQhBeHBUJdX2UKGgGaAloD0MIPiXnxJ7SZUCUhpRSlGgVTegDaBZHQJlEdXaJyhl1fZQoaAZoCWgPQwhagLbVLKVjQJSGlFKUaBVN6ANoFkdAmUSzn7pFC3V9lChoBmgJaA9DCGxfQC9ckmBAlIaUUpRoFU3oA2gWR0CZRR05lvqDdX2UKGgGaAloD0MIEHS0qqXcYkCUhpRSlGgVTegDaBZHQJlNduejEeh1fZQoaAZoCWgPQwjTTzi7NZVjQJSGlFKUaBVN6ANoFkdAmVDT5O8CgnV9lChoBmgJaA9DCP8Iw4AlQGBAlIaUUpRoFU3oA2gWR0CZUoDQZ4wAdX2UKGgGaAloD0MIw0gvanfvY0CUhpRSlGgVTegDaBZHQJlcRg1FYuF1fZQoaAZoCWgPQwiOzvkpjl9hQJSGlFKUaBVN6ANoFkdAmVxLXYlIE3V9lChoBmgJaA9DCC82rRQC0mFAlIaUUpRoFU3oA2gWR0CZYuy/sVtXdX2UKGgGaAloD0MISN+kaVCuZECUhpRSlGgVTegDaBZHQJlrrBdld1N1fZQoaAZoCWgPQwhS8X9HVDxjQJSGlFKUaBVN6ANoFkdAmWvxuXNTtXV9lChoBmgJaA9DCCfcK/NWRTRAlIaUUpRoFUvdaBZHQJl1aY1He8B1fZQoaAZoCWgPQwhzSGqh5B1pQJSGlFKUaBVN6ANoFkdAmX4G5DqnnHV9lChoBmgJaA9DCPd4IR0ea2FAlIaUUpRoFU3oA2gWR0CZfuQgs9SudX2UKGgGaAloD0MIR8oWSbu9U0CUhpRSlGgVS5toFkdAmYKzgZTAFnV9lChoBmgJaA9DCMwMG2X9n2BAlIaUUpRoFU3oA2gWR0CZiDe6qbSadX2UKGgGaAloD0MIjZYDPVSvY0CUhpRSlGgVTegDaBZHQJmIRs+FDfF1fZQoaAZoCWgPQwjhYG9iyGJiQJSGlFKUaBVN6ANoFkdAmYsDQZ4wAXV9lChoBmgJaA9DCOKPos7cfmVAlIaUUpRoFU3oA2gWR0CZjGpD/lySdX2UKGgGaAloD0MINnhflYvhYUCUhpRSlGgVTegDaBZHQJmMkit7rs11fZQoaAZoCWgPQwg3p5IBIKRlQJSGlFKUaBVN6ANoFkdAmYzHljmSyXV9lChoBmgJaA9DCEz8UdQZ9mdAlIaUUpRoFU3oA2gWR0CZkevJzT4MdX2UKGgGaAloD0MIvOZVnVWKZECUhpRSlGgVTegDaBZHQJmUtz1bqyJ1fZQoaAZoCWgPQwgGZK93/19kQJSGlFKUaBVN6ANoFkdAmZY9xyXD33V9lChoBmgJaA9DCBNHHoisZ2JAlIaUUpRoFU3oA2gWR0CZnx0w8GLUdX2UKGgGaAloD0MIdcqjG+FyZECUhpRSlGgVTegDaBZHQJmfI5T6zmh1fZQoaAZoCWgPQwgxJZLoZaJiQJSGlFKUaBVN6ANoFkdAmakYb4rSVnV9lChoBmgJaA9DCEWeJF0z119AlIaUUpRoFU3oA2gWR0CZqUUMXrMUdX2UKGgGaAloD0MIvyzt1FzwaUCUhpRSlGgVTegDaBZHQJm4tQfp2U11fZQoaAZoCWgPQwgJjPUNzLdiQJSGlFKUaBVN6ANoFkdAmbmRjWkJr3V9lChoBmgJaA9DCA/vObCcKWhAlIaUUpRoFU3oA2gWR0CZvV6CDmKZdX2UKGgGaAloD0MI5ssLsA82ZkCUhpRSlGgVTegDaBZHQJoWmaScLBt1fZQoaAZoCWgPQwhDrtSzIF1kQJSGlFKUaBVN6ANoFkdAmhao0qH45HV9lChoBmgJaA9DCGwm32xzDmRAlIaUUpRoFU3oA2gWR0CaGW0dBBzFdX2UKGgGaAloD0MIPIVcqeenZECUhpRSlGgVTegDaBZHQJoat+9alk91fZQoaAZoCWgPQwgyrOKNzPZiQJSGlFKUaBVN6ANoFkdAmhrZZntfHHV9lChoBmgJaA9DCI/k8h/SdGJAlIaUUpRoFU3oA2gWR0CaGw/FirksdX2UKGgGaAloD0MIHmtGBrkzYkCUhpRSlGgVTegDaBZHQJogHpOerdZ1fZQoaAZoCWgPQwgZrg6AOEpnQJSGlFKUaBVN6ANoFkdAmiLZG8VYZHV9lChoBmgJaA9DCIeowp/htWRAlIaUUpRoFU3oA2gWR0CaJEpqASWadX2UKGgGaAloD0MIdA0zNJ70YECUhpRSlGgVTegDaBZHQJowfq6e5Fx1fZQoaAZoCWgPQwg0aVN1jyZkQJSGlFKUaBVN6ANoFkdAmjCHaBZpz3V9lChoBmgJaA9DCBPzrKQVEFBAlIaUUpRoFUvnaBZHQJozz8Kohpx1fZQoaAZoCWgPQwj/Qo8Yvb5nQJSGlFKUaBVN6ANoFkdAmjyHcQAdXHV9lChoBmgJaA9DCLQDrivmbGNAlIaUUpRoFU3oA2gWR0CaPLPOIInjdX2UKGgGaAloD0MIbatZZ/wVYECUhpRSlGgVTegDaBZHQJpJKeqaPS51fZQoaAZoCWgPQwjWUkDafwxoQJSGlFKUaBVN6ANoFkdAmkm7W/ag3HV9lChoBmgJaA9DCBk8TPtmeGdAlIaUUpRoFU3oA2gWR0CaTC4cWCVbdX2UKGgGaAloD0MICTVDqijxZECUhpRSlGgVTegDaBZHQJpQK8AaNuN1fZQoaAZoCWgPQwjjGp/J/nlfQJSGlFKUaBVN6ANoFkdAmlA/4yoGZHV9lChoBmgJaA9DCHR7SWM0fGFAlIaUUpRoFU3oA2gWR0CaUxkX1rZbdX2UKGgGaAloD0MInIcTmM50Y0CUhpRSlGgVTegDaBZHQJpUf4fwI+p1fZQoaAZoCWgPQwgTukviLAVgQJSGlFKUaBVN6ANoFkdAmlSliKBNEnV9lChoBmgJaA9DCAt+G2K8+V5AlIaUUpRoFU3oA2gWR0CaVNtITXardX2UKGgGaAloD0MI/kgRGVbLYkCUhpRSlGgVTegDaBZHQJpaiqcVgx91fZQoaAZoCWgPQwjrq6sCNXpgQJSGlFKUaBVN6ANoFkdAml817x/d7HV9lChoBmgJaA9DCIm3zr9dk2ZAlIaUUpRoFU3oA2gWR0Caa35oXbdrdX2UKGgGaAloD0MIxmmIKvxZX0CUhpRSlGgVTegDaBZHQJprh5D7ZWd1fZQoaAZoCWgPQwhbCkj7n1VgQJSGlFKUaBVN6ANoFkdAmm8PNqxkd3V9lChoBmgJaA9DCOEoeXWOV2hAlIaUUpRoFU3oA2gWR0CaeB4FRpDedX2UKGgGaAloD0MIqIsUysJoZUCUhpRSlGgVTegDaBZHQJp4Soo/iYN1fZQoaAZoCWgPQwjL9baZillhQJSGlFKUaBVN6ANoFkdAmoTUAo5PuXV9lChoBmgJaA9DCCf5Eb/i6GRAlIaUUpRoFU3oA2gWR0CahXE/B3zMdX2UKGgGaAloD0MIbhea67SkY0CUhpRSlGgVTegDaBZHQJqIRKIznA91fZQoaAZoCWgPQwjYRdEDn3BoQJSGlFKUaBVN6ANoFkdAmozJQHiWFHV9lChoBmgJaA9DCNi61Ah9GGdAlIaUUpRoFU3oA2gWR0CajNk/KQq7dX2UKGgGaAloD0MI5WGh1rTiZkCUhpRSlGgVTegDaBZHQJro2LS/j811fZQoaAZoCWgPQwgWp1oLs8hgQJSGlFKUaBVN6ANoFkdAmupeFYdQwnV9lChoBmgJaA9DCMJQhxVuQWlAlIaUUpRoFU3oA2gWR0Ca6odAxBVudX2UKGgGaAloD0MIQndJnBWqYECUhpRSlGgVTegDaBZHQJrqw+TvAoJ1fZQoaAZoCWgPQwhTd2UXjEpjQJSGlFKUaBVN6ANoFkdAmvDKqGUOeHV9lChoBmgJaA9DCGTnbWz2L2VAlIaUUpRoFU3oA2gWR0Ca9Yju8brDdX2UKGgGaAloD0MI8WjjiLVuYUCUhpRSlGgVTegDaBZHQJr+dj7Q9id1fZQoaAZoCWgPQwi6wOWx5rZmQJSGlFKUaBVN6ANoFkdAmv56q0dBB3V9lChoBmgJaA9DCGiR7Xy/pWhAlIaUUpRoFU3oA2gWR0CbANC5mRNidX2UKGgGaAloD0MIEVSNXg2bZ0CUhpRSlGgVTegDaBZHQJsIWhufmLd1fZQoaAZoCWgPQwjBqQ8kb6RiQJSGlFKUaBVN6ANoFkdAmwiGVE/jbXV9lChoBmgJaA9DCEM6PITxqmdAlIaUUpRoFU3oA2gWR0CbF58F6iTMdX2UKGgGaAloD0MIQ8nk1M57ZECUhpRSlGgVTegDaBZHQJsYgF9roGJ1fZQoaAZoCWgPQwjwFd16TQ1jQJSGlFKUaBVN6ANoFkdAmxyGp6yB1HV9lChoBmgJaA9DCCnqzD0kHGdAlIaUUpRoFU3oA2gWR0CbIxKiwjdIdX2UKGgGaAloD0MIPpKSHgbAaUCUhpRSlGgVTegDaBZHQJsjKvB7/n51fZQoaAZoCWgPQwiInL6eL3ZhQJSGlFKUaBVN6ANoFkdAmya8kIHC43V9lChoBmgJaA9DCOs2qP1WZ2VAlIaUUpRoFU3oA2gWR0CbKB/VRUFTdX2UKGgGaAloD0MIDtsWZbYHaECUhpRSlGgVTegDaBZHQJsoRqk/KQt1fZQoaAZoCWgPQwi/DwcJUUZnQJSGlFKUaBVN6ANoFkdAmyiCMglniHV9lChoBmgJaA9DCOJyvALRamdAlIaUUpRoFU3oA2gWR0CbLnfTkQwsdX2UKGgGaAloD0MIEvbtJKJhYUCUhpRSlGgVTegDaBZHQJszG8rZrYZ1fZQoaAZoCWgPQwhat0Htt7tlQJSGlFKUaBVN6ANoFkdAmzxLH2h7FHV9lChoBmgJaA9DCBGMg0tHx2NAlIaUUpRoFU3oA2gWR0CbPE/W1+iKdX2UKGgGaAloD0MIdsHgmjsTZECUhpRSlGgVTegDaBZHQJs+ytozvZ11fZQoaAZoCWgPQwgceLXcmRVhQJSGlFKUaBVN6ANoFkdAm0ZV6Vt4zXV9lChoBmgJaA9DCL8LW7OVXWRAlIaUUpRoFU3oA2gWR0CbRocCYCyRdX2UKGgGaAloD0MIhEnx8Qk7ZUCUhpRSlGgVTegDaBZHQJtWG58Sf191fZQoaAZoCWgPQwhQU8vWevJgQJSGlFKUaBVN6ANoFkdAm1cDR6Ww/3V9lChoBmgJaA9DCNxnlZlSUmRAlIaUUpRoFU3oA2gWR0CbWuqQA+6idX2UKGgGaAloD0MIPrK5ah4GZECUhpRSlGgVTegDaBZHQJthCLaVUuN1fZQoaAZoCWgPQwgxmSoYlatkQJSGlFKUaBVN6ANoFkdAm2EZU5uIh3VlLg=="
74
  },
75
  "ep_success_buffer": {
76
  ":type:": "<class 'collections.deque'>",
77
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
  },
79
+ "_n_updates": 256,
80
  "n_steps": 2048,
81
  "gamma": 0.9995,
82
  "gae_lambda": 0.985,
ppo-LunarLander-v2312/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a29ed8bb8ba07c2565780e3716c06ed13dac77ebec4acda4ff83ba4cbfda7aac
3
  size 87929
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c4401216f6a79312777a65ff2b912397ce483dee33d9253c412f08b52da05c9
3
  size 87929
ppo-LunarLander-v2312/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1618b0737f9a3155fd5f4d70c9c2c9ed45e79c33422070ad0064761c53ee5e82
3
  size 43393
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:926f6e9c7750196cbfb42234c53539de43c02bca1708869544142c2fddf002fc
3
  size 43393
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -236.41373794903046, "std_reward": 132.3015734412405, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-10T23:12:35.169359"}
 
1
+ {"mean_reward": 259.13309107665424, "std_reward": 20.599709176256702, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-10T23:40:35.409690"}