Chakshu/conversation_terminator_classifier
This model is a fine-tuned version of google/mobilebert-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.0364
- Train Binary Accuracy: 0.9915
- Epoch: 8
Example Usage
from transformers import AutoTokenizer, TFBertForSequenceClassification, BertTokenizer
import tensorflow as tf
model_name = 'Chakshu/conversation_terminator_classifier'
tokenizer = BertTokenizer.from_pretrained(model_name)
model = TFBertForSequenceClassification.from_pretrained(model_name)
inputs = tokenizer("I will talk to you later", return_tensors="np", padding=True)
outputs = model(inputs.input_ids, inputs.attention_mask)
probabilities = tf.nn.sigmoid(outputs.logits)
# Round the probabilities to the nearest integer to get the class prediction
predicted_class = tf.round(probabilities)
print("The last message by the user indicates that the conversation has", "'ENDED'" if int(predicted_class.numpy()) == 1 else "'NOT ENDED'")
Model description
Classifies if the user is ending the conversation or wanting to continue it.
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': 2e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Train Binary Accuracy | Epoch |
---|---|---|
0.2552 | 0.9444 | 0 |
0.1295 | 0.9872 | 1 |
0.0707 | 0.9872 | 2 |
0.0859 | 0.9829 | 3 |
0.0484 | 0.9872 | 4 |
0.0363 | 0.9957 | 5 |
0.0209 | 1.0 | 6 |
0.0268 | 0.9957 | 7 |
0.0364 | 0.9915 | 8 |
Framework versions
- Transformers 4.28.0
- TensorFlow 2.12.0
- Datasets 2.12.0
- Tokenizers 0.13.3
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.