ga89tiy
load model from hf
dc94d87
raw
history blame
25.8 kB
# Copyright 2023 Haotian Liu
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from abc import ABC, abstractmethod
import torch
from LLAVA_Biovil.biovil_t.model import ImageModel
from LLAVA_Biovil.biovil_t.pretrained import _download_biovil_t_image_model_weights
from LLAVA_Biovil.biovil_t.types import ImageEncoderType
from LLAVA_Biovil.llava.model.multimodal_encoder.builder import build_vision_tower
from LLAVA_Biovil.llava.model.multimodal_projector.builder import build_vision_projector, build_image_pooler
from LLAVA_Biovil.llava.constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
class LlavaMetaModel:
def __init__(self, config, mv_type='none'):
super(LlavaMetaModel, self).__init__(config)
if hasattr(config, "mm_vision_tower"):
self.vision_tower = build_vision_tower(config, delay_load=True)
self.mm_projector = build_vision_projector(config)
self.image_pooler = build_image_pooler(config) if "pool" in mv_type else None
def get_vision_tower(self):
vision_tower = getattr(self, 'vision_tower', None)
if type(vision_tower) is list:
vision_tower = vision_tower[0]
return vision_tower
def get_image_pooler(self):
return self.image_pooler
def initialize_vision_modules(self, model_args, fsdp=None):
vision_tower = model_args.vision_tower
mm_vision_select_layer = model_args.mm_vision_select_layer
mm_vision_select_feature = model_args.mm_vision_select_feature
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
self.config.mm_vision_tower = vision_tower
self.config.mv_type = getattr(model_args, 'mv_type', False)
if self.get_vision_tower() is None:
if self.config.mm_vision_tower == 'biovil':
biovilt_checkpoint_path = _download_biovil_t_image_model_weights()
model_type = ImageEncoderType.RESNET50_MULTI_IMAGE
vision_tower = ImageModel(img_encoder_type=model_type,
joint_feature_size=128,
pretrained_model_path=biovilt_checkpoint_path)
# freeze vision_tower layers
for p in vision_tower.parameters():
p.requires_grad = False
else:
vision_tower = build_vision_tower(model_args)
if fsdp is not None and len(fsdp) > 0:
self.vision_tower = [vision_tower]
else:
self.vision_tower = vision_tower
else:
if fsdp is not None and len(fsdp) > 0:
vision_tower = self.vision_tower[0]
else:
vision_tower = self.vision_tower
vision_tower.load_model()
self.config.use_mm_proj = True
self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear')
self.config.mm_hidden_size = vision_tower.hidden_size if self.config.mm_vision_tower != 'biovil' else vision_tower.feature_size
self.config.mm_vision_select_layer = mm_vision_select_layer
self.config.mm_vision_select_feature = mm_vision_select_feature
if getattr(self, 'mm_projector', None) is None or model_args.vision_tower == 'biovil': #for biovil wrong weights are loaded from model shards, so we need to overwrite the vision projector again
self.mm_projector = build_vision_projector(self.config)
else:
# In case it is frozen by LoRA
for p in self.mm_projector.parameters():
p.requires_grad = True
# unfreeze image pooler
if self.image_pooler is not None:
for p in self.image_pooler.parameters():
p.requires_grad = True
if pretrain_mm_mlp_adapter is not None:
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
def get_w(weights, keyword):
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}
self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'))
class LlavaMetaForCausalLM(ABC):
@abstractmethod
def get_model(self):
pass
def get_vision_tower(self):
return self.get_model().get_vision_tower()
def encode_images(self, images):
image_features = self.get_model().get_vision_tower()(images)
if self.get_model().config.mm_vision_tower == 'biovil':
image_features = image_features.patch_embeddings
# flatten
image_features = image_features.flatten(2).transpose(1,2)
image_features = self.get_model().mm_projector(image_features)
return image_features
def pad_embeddings(self, embeddings, num_imgs_present=None, num_imgs_past=None, padding_value=0):
"""
Pad the embeddings to have the same number in each batch.
Args:
- embeddings (List[Tensor]): List of embedding tensors, each with shape (num_images, embedding_dim).
- padding_value (float): Value to use for padding.
Returns:
- Tensor: Padded embeddings with shape (batch_size, max_num_images, embedding_dim).
- Tensor: Mask indicating real data (1) and padding (0).
"""
batch_size = len(embeddings)
img_len = embeddings[0].shape[1]
embedding_dim = embeddings[0].shape[2]
max_num_images = max(emb.shape[0] for emb in embeddings)
# Initialize padded embeddings and mask
padded_embeddings = torch.full((batch_size, max_num_images, img_len, embedding_dim), padding_value, dtype=embeddings[0].dtype, device=embeddings[0].device)
mask = torch.zeros(batch_size, max_num_images*img_len, dtype=torch.bool, device=embeddings[0].device)
# create token type ids with 0 for present 1 for past, 2 for padding, of shape (batch_size, max_num_images * img_len)
token_type_ids = torch.zeros(batch_size, max_num_images * img_len, dtype=torch.long, device=embeddings[0].device)
if num_imgs_present is not None:
# set token type ids for present to 1, for past to 2, 0 is padded elements
for idx, (present_len, past_len) in enumerate(zip(num_imgs_present, num_imgs_past)):
token_type_ids[idx, :present_len*img_len] = 1
token_type_ids[idx, present_len*img_len:(present_len+past_len)*img_len] = 2
# Pad each item in the batch
for idx, emb in enumerate(embeddings):
num_images = emb.shape[0]
padded_embeddings[idx, :num_images] = emb
mask[idx, :num_images*img_len] = 1
return padded_embeddings.flatten(1,2), mask, token_type_ids
def pad_embeddings_mv(self, embeddings, padding_value=0):
"""
Pad the embeddings to have the same number in each batch.
Args:
- embeddings (List[Tensor]): List of embedding tensors, each with shape (num_images, embedding_dim).
- padding_value (float): Value to use for padding.
Returns:
- Tensor: Padded embeddings with shape (batch_size, max_num_images, embedding_dim).
- Tensor: Mask indicating real data (1) and padding (0).
"""
batch_size = len(embeddings)
img_len = embeddings[0].shape[1]
embedding_dim = embeddings[0].shape[2]
max_num_images = max(emb.shape[0] for emb in embeddings)
# Initialize padded embeddings and mask
padded_embeddings = torch.full((batch_size, max_num_images, img_len, embedding_dim), padding_value, dtype=embeddings[0].dtype, device=embeddings[0].device)
mask = torch.zeros(batch_size, max_num_images*img_len, dtype=torch.bool, device=embeddings[0].device)
# Pad each item in the batch
for idx, emb in enumerate(embeddings):
num_images = emb.shape[0]
padded_embeddings[idx, :num_images] = emb
mask[idx, :num_images*img_len] = 1
return padded_embeddings.flatten(1,2), mask
def encode_images_pooled(self, images, split_sizes, num_imgs_present, num_imgs_past, mv_type="pool_all"):
image_pooler = self.get_image_pooler()
image_features = self.get_model().get_vision_tower()(images)
if self.get_model().config.mm_vision_tower == 'biovil':
image_features = image_features.patch_embeddings
# flatten
image_features = image_features.flatten(2).transpose(1,2)
if split_sizes is not None:
image_features = torch.split(image_features, split_sizes, dim=0)
if mv_type == "pool_all":
# merge present and past per batch
present_features = [image_features[i] for i in range(len(num_imgs_present))]
past_features = []
i = 0
for num_imgs_elem in num_imgs_past:
if num_imgs_elem != 0:
past_features.append(image_features[i+len(num_imgs_present)])
i += 1
else:
past_features.append(None)
all_img_features = []
for idx, (batch_num_present, batch_num_past) in enumerate(zip(num_imgs_present, num_imgs_past)):
if batch_num_past == 0:
all_img_features.append(present_features[idx])
else:
all_img_features.append(torch.cat((present_features[idx], past_features[idx]), dim=0))
all_img_features, mask, token_type_ids = self.pad_embeddings(all_img_features, num_imgs_present, num_imgs_past)
all_img_features = image_pooler(all_img_features, mask, token_type_ids)
elif mv_type == "pool_concat":
present_features = [image_features[i] for i in range(len(num_imgs_present))]
past_features = [image_features[i+len(num_imgs_present)] for i in range(len(image_features)-len(num_imgs_present))]
present_features, mask_present, _ = self.pad_embeddings(present_features)
past_features, mask_past, _ = self.pad_embeddings(past_features)
present_features = image_pooler(present_features, mask_present)
past_features = image_pooler(past_features, mask_past)
# TODO maybe max pool on past features to save tokens
# concat present and past per batch if past is not empty
all_img_features = []
idx_present = 0
idx_past = 0
for batch_num_present, batch_num_past in zip(num_imgs_present, num_imgs_past):
if batch_num_past == 0:
all_img_features.append(present_features[idx_present])
idx_present += 1
else:
all_img_features.append(torch.cat((present_features[idx_present], past_features[idx_past]), dim=0))
idx_present += 1
idx_past += 1
else:
raise NotImplementedError
if type(all_img_features) is list:
split_sizes = [image.shape[0] for image in all_img_features]
all_img_features = self.get_model().mm_projector(torch.cat(all_img_features, dim=0))
all_img_features = torch.split(all_img_features, split_sizes, dim=0)
else:
all_img_features = self.get_model().mm_projector(all_img_features)
return all_img_features
def encode_images_pooled_mv(self, images, split_sizes):
image_pooler = self.get_image_pooler()
image_features = self.get_model().get_vision_tower()(images)
if split_sizes is not None:
image_features = torch.split(image_features, split_sizes, dim=0)
image_features, mask = self.pad_embeddings_mv(image_features)
image_features = image_pooler(image_features, mask)
else:
mask = torch.ones((image_features.shape[0], image_features.shape[1]), dtype=torch.bool, device=image_features[0].device)
image_features = image_pooler(image_features, mask)
image_features = self.get_model().mm_projector(image_features)
return image_features
def get_image_pooler(self):
return self.get_model().get_image_pooler()
def prepare_inputs_labels_for_multimodal(
self, input_ids, position_ids, attention_mask, past_key_values, labels, images, prev_images=None
):
vision_tower = self.get_vision_tower()
if vision_tower is None or images is None or input_ids.shape[1] == 1:
if past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[1] == 1:
target_shape = past_key_values[-1][-1].shape[-2] + 1
attention_mask = torch.cat((attention_mask, torch.ones(
(attention_mask.shape[0], target_shape - attention_mask.shape[1]),
dtype=attention_mask.dtype,
device=attention_mask.device
)), dim=1)
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
return input_ids, position_ids, attention_mask, past_key_values, None, labels
if type(images) is list or images.ndim == 5:
if getattr(self.config, 'mv_type') == "concat":
concat_images = torch.cat([image for image in images], dim=0)
image_features = self.encode_images(concat_images)
split_sizes = [image.shape[0] for image in images]
image_features = torch.split(image_features, split_sizes, dim=0)
image_features = [x.flatten(0, 1).to(self.device) for x in image_features]
if getattr(self.config, 'mv_type') == "pool_all":
concat_images = torch.cat((torch.cat([image for image in images], dim=0), torch.cat([image for image in prev_images if image is not None], dim=0))) # first present, then past, all will be merged
split_sizes = [image.shape[0] for image in images]+ [image.shape[0] for image in prev_images if image is not None]
num_imgs_present = [image.shape[0] if image is not None else 0 for image in images]
num_imgs_past = [image.shape[0] if image is not None else 0 for image in prev_images]
image_features = self.encode_images_pooled(concat_images, split_sizes, num_imgs_present, num_imgs_past, "pool_all")
if getattr(self.config, 'mv_type') == "pool_concat": # TODO make sure to allow empty past -> shorter sequence
concat_images = torch.cat((torch.cat([image for image in images], dim=0), torch.cat([image for image in prev_images if image is not None], dim=0))) # first present, then past, all will be merged
split_sizes = [image.shape[0] for image in images]+ [image.shape[0] for image in prev_images if image is not None]
num_imgs_present = [image.shape[0] if image is not None else 0 for image in images]
num_imgs_past = [image.shape[0] if image is not None else 0 for image in prev_images]
image_features = self.encode_images_pooled(concat_images, split_sizes, num_imgs_present, num_imgs_past, "pool_concat")
if getattr(self.config, 'mv_type') == "pool": #no past images
concat_images = torch.cat([image for image in images], dim=0)
split_sizes = [image.shape[0] for image in images]
image_features = self.encode_images_pooled_mv(concat_images, split_sizes)
else:
if hasattr(self.config, 'mv_type') and getattr(self.config, 'mv_type') == "pool_all":
image_features = self.encode_images_pooled(images, None).to(self.device)
elif hasattr(self.config, 'mv_type') and getattr(self.config, 'mv_type') == "pool":
image_features = self.encode_images_pooled_mv(images, None).to(self.device)
else:
image_features = self.encode_images(images).to(self.device)
# TODO: image start / end is not implemented here to support pretraining.
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
raise NotImplementedError
# Let's just add dummy tensors if they do not exist,
# it is a headache to deal with None all the time.
# But it is not ideal, and if you have a better idea,
# please open an issue / submit a PR, thanks.
_labels = labels
_position_ids = position_ids
_attention_mask = attention_mask
if attention_mask is None:
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
else:
attention_mask = attention_mask.bool()
if position_ids is None:
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device) #TODO throws GPU error
if labels is None:
labels = torch.full_like(input_ids, IGNORE_INDEX)
# remove the padding using attention_mask -- TODO: double check
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]
new_input_embeds = []
new_labels = []
cur_image_idx = 0
for batch_idx, cur_input_ids in enumerate(input_ids):
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
if num_images == 0:
cur_image_features = image_features[cur_image_idx]
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
new_input_embeds.append(cur_input_embeds)
new_labels.append(labels[batch_idx])
cur_image_idx += 1
continue
image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
cur_input_ids_noim = []
cur_labels = labels[batch_idx]
cur_labels_noim = []
for i in range(len(image_token_indices) - 1):
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]])
cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]])
split_sizes = [x.shape[0] for x in cur_labels_noim]
cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim))
cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
cur_new_input_embeds = []
cur_new_labels = []
for i in range(num_images + 1):
cur_new_input_embeds.append(cur_input_embeds_no_im[i])
cur_new_labels.append(cur_labels_noim[i])
if i < num_images:
cur_image_features = image_features[cur_image_idx]
cur_image_idx += 1
cur_new_input_embeds.append(cur_image_features)
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))
cur_new_input_embeds = torch.cat(cur_new_input_embeds)
cur_new_labels = torch.cat(cur_new_labels)
new_input_embeds.append(cur_new_input_embeds)
new_labels.append(cur_new_labels)
# Truncate sequences to max length as image embeddings can make the sequence longer
tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None)
if tokenizer_model_max_length is not None:
max_len_orig = max(x.shape[0] for x in new_input_embeds)
if max_len_orig > tokenizer_model_max_length:
print(f"Truncating sequences of len {max_len_orig} to {tokenizer_model_max_length} to fit the model's input length")
new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
# Combine them
max_len = max(x.shape[0] for x in new_input_embeds)
batch_size = len(new_input_embeds)
new_input_embeds_padded = []
new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
cur_len = cur_new_embed.shape[0]
if getattr(self.config, 'tokenizer_padding_side', 'right') == "left":
new_input_embeds_padded.append(torch.cat((
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device),
cur_new_embed
), dim=0))
if cur_len > 0:
new_labels_padded[i, -cur_len:] = cur_new_labels
attention_mask[i, -cur_len:] = True
position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
else:
new_input_embeds_padded.append(torch.cat((
cur_new_embed,
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)
), dim=0))
if cur_len > 0:
new_labels_padded[i, :cur_len] = cur_new_labels
attention_mask[i, :cur_len] = True
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
if _labels is None:
new_labels = None
else:
new_labels = new_labels_padded
if _attention_mask is None:
attention_mask = None
else:
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
if _position_ids is None:
position_ids = None
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels
def initialize_vision_tokenizer(self, model_args, tokenizer):
if model_args.mm_use_im_patch_token:
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
self.resize_token_embeddings(len(tokenizer))
if model_args.mm_use_im_start_end:
num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
self.resize_token_embeddings(len(tokenizer))
if num_new_tokens > 0:
input_embeddings = self.get_input_embeddings().weight.data
output_embeddings = self.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg
if model_args.tune_mm_mlp_adapter:
for p in self.get_input_embeddings().parameters():
p.requires_grad = True
for p in self.get_output_embeddings().parameters():
p.requires_grad = False
if model_args.pretrain_mm_mlp_adapter:
mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu')
embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight']
assert num_new_tokens == 2
if input_embeddings.shape == embed_tokens_weight.shape:
input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
elif embed_tokens_weight.shape[0] == num_new_tokens:
input_embeddings[-num_new_tokens:] = embed_tokens_weight
else:
raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
elif model_args.mm_use_im_patch_token:
if model_args.tune_mm_mlp_adapter:
for p in self.get_input_embeddings().parameters():
p.requires_grad = False
for p in self.get_output_embeddings().parameters():
p.requires_grad = False