OpenELM-1_1B-DPO-2

This model is a fine-tuned version of data/OpenELM-1_1B-SFT on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7793
  • Rewards/chosen: -11.75
  • Rewards/rejected: -13.6875
  • Rewards/accuracies: 0.7227
  • Rewards/margins: 1.9141
  • Logps/rejected: -564.0
  • Logps/chosen: -556.0
  • Logits/rejected: -13.0625
  • Logits/chosen: -13.3125

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.6791 1.0 1911 0.7098 -10.8125 -11.9375 0.6992 1.1328 -528.0 -536.0 -12.5625 -12.6875
0.0506 2.0 3822 0.7793 -11.75 -13.6875 0.7227 1.9141 -564.0 -556.0 -13.0625 -13.3125

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.3.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
1.08B params
Tensor type
BF16
·
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.

Dataset used to train CharlesLi/OpenELM-1_1B-DPO-2