OpenELM-1_1B-DPO-full-max-12-reward

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0566
  • Rewards/chosen: -3.1406
  • Rewards/rejected: -3.6719
  • Rewards/accuracies: 0.5020
  • Rewards/margins: 0.5234
  • Logps/rejected: -656.0
  • Logps/chosen: -632.0
  • Logits/rejected: -16.875
  • Logits/chosen: -17.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.0486 0.1047 100 0.7359 -1.1406 -1.5078 0.5840 0.3594 -438.0 -432.0 -12.5625 -12.75
0.0866 0.2094 200 0.7360 -1.0156 -1.1641 0.5449 0.1436 -404.0 -420.0 -12.6875 -13.0
0.0814 0.3141 300 0.7622 -1.7031 -1.8906 0.5234 0.1865 -478.0 -488.0 -6.5938 -7.2812
0.0887 0.4188 400 0.7650 -1.4688 -1.5781 0.5078 0.1094 -446.0 -466.0 -17.25 -17.125
0.0261 0.5236 500 0.8273 -1.9766 -2.1875 0.4883 0.2119 -508.0 -516.0 -17.25 -17.25
0.0476 0.6283 600 0.9206 -2.3594 -2.7031 0.5020 0.3359 -560.0 -556.0 -16.125 -16.375
0.0459 0.7330 700 0.8929 -2.0938 -2.3125 0.4707 0.2148 -520.0 -528.0 -16.5 -16.5
0.0331 0.8377 800 1.0045 -3.0938 -3.3281 0.4785 0.2207 -620.0 -628.0 -15.125 -15.4375
0.033 0.9424 900 1.0609 -3.0625 -3.3594 0.4980 0.3047 -624.0 -624.0 -13.4375 -14.0625
0.0123 1.0471 1000 1.0070 -2.9531 -3.2344 0.4922 0.2871 -612.0 -612.0 -16.375 -16.375
0.0111 1.1518 1100 0.9948 -3.0469 -3.375 0.4883 0.3340 -628.0 -624.0 -16.125 -16.25
0.001 1.2565 1200 1.0067 -2.8438 -3.2031 0.5020 0.3555 -608.0 -604.0 -16.25 -16.375
0.0078 1.3613 1300 0.9639 -2.3594 -2.6406 0.4824 0.2812 -552.0 -556.0 -15.9375 -16.125
0.0018 1.4660 1400 0.9918 -2.3281 -2.6406 0.4902 0.3027 -552.0 -552.0 -17.0 -17.0
0.0042 1.5707 1500 0.9647 -2.4375 -2.8281 0.5059 0.3926 -572.0 -564.0 -15.4375 -15.5625
0.0028 1.6754 1600 1.0578 -2.9062 -3.4375 0.5039 0.5234 -632.0 -608.0 -15.875 -16.0
0.0074 1.7801 1700 0.8793 -1.9844 -2.3281 0.5039 0.3496 -520.0 -516.0 -16.5 -16.5
0.0054 1.8848 1800 0.9229 -2.2812 -2.7031 0.5 0.4121 -560.0 -548.0 -16.875 -17.0
0.0246 1.9895 1900 1.0638 -2.9219 -3.4219 0.4902 0.5039 -632.0 -612.0 -16.75 -16.875
0.0003 2.0942 2000 1.0745 -3.0312 -3.5312 0.5020 0.4961 -644.0 -624.0 -16.75 -16.875
0.0006 2.1990 2100 1.1060 -3.3438 -3.8906 0.5059 0.5469 -676.0 -652.0 -16.625 -16.75
0.0004 2.3037 2200 1.0719 -3.2031 -3.7344 0.5059 0.5391 -664.0 -640.0 -16.75 -17.0
0.0012 2.4084 2300 1.0952 -3.3281 -3.8906 0.5020 0.5703 -680.0 -652.0 -16.75 -17.0
0.0003 2.5131 2400 1.0804 -3.2656 -3.8125 0.5 0.5547 -672.0 -644.0 -16.875 -17.0
0.0005 2.6178 2500 1.0807 -3.2656 -3.8125 0.5039 0.5547 -672.0 -644.0 -16.875 -17.0
0.0009 2.7225 2600 1.0572 -3.1406 -3.6562 0.5020 0.5234 -656.0 -632.0 -16.875 -17.0
0.0002 2.8272 2700 1.0559 -3.1406 -3.6562 0.5039 0.5273 -656.0 -632.0 -16.875 -17.0
0.0002 2.9319 2800 1.0566 -3.1406 -3.6719 0.5020 0.5234 -656.0 -632.0 -16.875 -17.0

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.3.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
9
Safetensors
Model size
1.08B params
Tensor type
BF16
·
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.