OpenELM-1_1B-DPO-full-max-min-reward

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2624
  • Rewards/chosen: -5.875
  • Rewards/rejected: -6.0938
  • Rewards/accuracies: 0.4707
  • Rewards/margins: 0.2383
  • Logps/rejected: -900.0
  • Logps/chosen: -904.0
  • Logits/rejected: -13.5625
  • Logits/chosen: -14.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.054 0.1047 100 0.7392 -1.7969 -2.0781 0.5410 0.2754 -496.0 -498.0 -15.125 -15.1875
0.0654 0.2094 200 0.8200 -1.8828 -2.1094 0.5137 0.2285 -500.0 -506.0 -16.25 -16.375
0.0359 0.3141 300 0.9338 -2.6406 -2.9531 0.5020 0.3027 -584.0 -584.0 -13.875 -14.0
0.0593 0.4188 400 0.8586 -2.2812 -2.5156 0.5312 0.2324 -540.0 -548.0 -14.8125 -15.0
0.0262 0.5236 500 1.0656 -3.0 -3.2344 0.4844 0.2354 -612.0 -620.0 -16.0 -16.125
0.0525 0.6283 600 0.9800 -2.6406 -2.8281 0.4941 0.1777 -572.0 -584.0 -13.5625 -13.8125
0.064 0.7330 700 1.0007 -3.3906 -3.5156 0.4980 0.1211 -640.0 -660.0 -15.0625 -15.1875
0.0251 0.8377 800 1.0387 -3.875 -3.9375 0.4824 0.0598 -680.0 -704.0 -12.8125 -13.25
0.0443 0.9424 900 1.0605 -4.5312 -4.5938 0.4531 0.0466 -748.0 -772.0 -13.5625 -13.9375
0.0024 1.0471 1000 1.2371 -4.5 -4.75 0.4727 0.2373 -764.0 -768.0 -13.25 -13.625
0.0028 1.1518 1100 1.1591 -3.9219 -4.0312 0.4551 0.1089 -692.0 -708.0 -14.0625 -14.375
0.007 1.2565 1200 1.1814 -4.2188 -4.3438 0.4629 0.1328 -724.0 -740.0 -14.0625 -14.4375
0.0022 1.3613 1300 1.1827 -4.125 -4.2812 0.4785 0.1523 -716.0 -732.0 -13.875 -14.25
0.0036 1.4660 1400 1.2144 -4.75 -4.9688 0.4863 0.2314 -784.0 -792.0 -14.1875 -14.5625
0.0011 1.5707 1500 1.2473 -4.75 -4.9688 0.4863 0.2002 -784.0 -792.0 -13.9375 -14.375
0.0019 1.6754 1600 1.2159 -5.5 -5.75 0.4785 0.2539 -864.0 -868.0 -13.0 -13.5625
0.002 1.7801 1700 1.2082 -5.3438 -5.5625 0.4727 0.2275 -844.0 -852.0 -13.8125 -14.25
0.0025 1.8848 1800 1.1580 -4.7188 -4.9062 0.4746 0.1846 -780.0 -792.0 -13.375 -13.8125
0.007 1.9895 1900 1.1403 -4.8438 -4.9688 0.4766 0.1523 -788.0 -800.0 -13.0625 -13.4375
0.0002 2.0942 2000 1.1499 -5.0 -5.125 0.4805 0.1416 -804.0 -816.0 -13.125 -13.5625
0.0271 2.1990 2100 1.1933 -5.1562 -5.3438 0.4863 0.1641 -820.0 -836.0 -13.3125 -13.6875
0.0003 2.3037 2200 1.2642 -5.7188 -5.9688 0.4844 0.2441 -888.0 -892.0 -13.3125 -13.75
0.0004 2.4084 2300 1.2548 -5.7188 -5.9375 0.4805 0.2432 -884.0 -888.0 -13.4375 -13.8125
0.0003 2.5131 2400 1.2491 -5.7188 -5.9688 0.4746 0.2441 -888.0 -892.0 -13.5625 -14.0
0.0005 2.6178 2500 1.2546 -5.7812 -6.0312 0.4727 0.2432 -892.0 -896.0 -13.625 -14.0
0.0001 2.7225 2600 1.2598 -5.8438 -6.0938 0.4727 0.2383 -896.0 -904.0 -13.5625 -14.0
0.0002 2.8272 2700 1.2617 -5.875 -6.0938 0.4746 0.2354 -900.0 -904.0 -13.5625 -14.0
0.0002 2.9319 2800 1.2624 -5.875 -6.0938 0.4707 0.2383 -900.0 -904.0 -13.5625 -14.0

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.3.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
8
Safetensors
Model size
1.08B params
Tensor type
BF16
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The HF Inference API does not support model that require custom code execution.