OpenELM-1_1B-DPO-full-most-similar
This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.2575
- Rewards/chosen: -6.8438
- Rewards/rejected: -7.25
- Rewards/accuracies: 0.5215
- Rewards/margins: 0.3887
- Logps/rejected: -1012.0
- Logps/chosen: -1004.0
- Logits/rejected: -5.0
- Logits/chosen: -6.125
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|
0.6224 | 0.1047 | 100 | 0.6811 | -0.4375 | -0.4980 | 0.5566 | 0.0618 | -338.0 | -362.0 | -12.25 | -12.5 |
0.624 | 0.2093 | 200 | 0.6957 | -0.8281 | -0.8867 | 0.5176 | 0.0569 | -378.0 | -402.0 | -11.0 | -11.4375 |
0.6062 | 0.3140 | 300 | 0.7007 | -0.5938 | -0.6289 | 0.5078 | 0.0337 | -352.0 | -378.0 | -12.25 | -12.4375 |
0.6334 | 0.4186 | 400 | 0.7011 | -1.2656 | -1.3438 | 0.5176 | 0.0815 | -424.0 | -444.0 | -11.375 | -11.75 |
0.6236 | 0.5233 | 500 | 0.7273 | -1.1172 | -1.1875 | 0.5527 | 0.0659 | -408.0 | -430.0 | -11.4375 | -11.8125 |
0.648 | 0.6279 | 600 | 0.6997 | -1.3438 | -1.3984 | 0.5059 | 0.0508 | -428.0 | -452.0 | -13.75 | -13.625 |
0.6131 | 0.7326 | 700 | 0.7108 | -1.4922 | -1.5312 | 0.5293 | 0.0396 | -442.0 | -468.0 | -12.8125 | -12.625 |
0.621 | 0.8373 | 800 | 0.7204 | -1.3516 | -1.4141 | 0.5371 | 0.0581 | -430.0 | -454.0 | -14.0625 | -14.0625 |
0.6114 | 0.9419 | 900 | 0.7060 | -1.6797 | -1.8125 | 0.5371 | 0.1328 | -470.0 | -486.0 | -13.875 | -13.8125 |
0.1659 | 1.0466 | 1000 | 0.8400 | -2.9688 | -3.2188 | 0.5645 | 0.2520 | -608.0 | -616.0 | -7.5 | -8.5625 |
0.1767 | 1.1512 | 1100 | 0.9194 | -3.0781 | -3.2188 | 0.5156 | 0.1406 | -612.0 | -624.0 | -12.125 | -13.0 |
0.1574 | 1.2559 | 1200 | 0.9110 | -3.8125 | -4.0938 | 0.5332 | 0.2715 | -696.0 | -700.0 | -11.9375 | -12.75 |
0.1637 | 1.3605 | 1300 | 0.8868 | -3.5312 | -3.7656 | 0.5410 | 0.2314 | -664.0 | -672.0 | -11.25 | -12.0 |
0.1275 | 1.4652 | 1400 | 0.9276 | -3.7031 | -3.9844 | 0.5488 | 0.2754 | -688.0 | -688.0 | -9.0625 | -10.1875 |
0.1468 | 1.5699 | 1500 | 0.9168 | -3.9688 | -4.1562 | 0.5352 | 0.1943 | -704.0 | -716.0 | -10.6875 | -11.3125 |
0.1427 | 1.6745 | 1600 | 0.9187 | -4.3125 | -4.5625 | 0.5234 | 0.2656 | -744.0 | -748.0 | -10.125 | -11.0 |
0.1592 | 1.7792 | 1700 | 0.8701 | -4.6875 | -5.0312 | 0.5586 | 0.3516 | -792.0 | -784.0 | -10.4375 | -11.25 |
0.1341 | 1.8838 | 1800 | 0.9226 | -3.9531 | -4.2188 | 0.5391 | 0.2598 | -708.0 | -712.0 | -9.625 | -10.5625 |
0.1366 | 1.9885 | 1900 | 0.9103 | -4.1562 | -4.4375 | 0.5234 | 0.2754 | -732.0 | -736.0 | -9.9375 | -10.75 |
0.026 | 2.0931 | 2000 | 1.0973 | -5.7812 | -6.125 | 0.5254 | 0.3379 | -900.0 | -896.0 | -6.5 | -7.5312 |
0.0178 | 2.1978 | 2100 | 1.1703 | -6.0312 | -6.4375 | 0.5293 | 0.3867 | -932.0 | -924.0 | -6.2188 | -7.2812 |
0.019 | 2.3025 | 2200 | 1.1800 | -6.4062 | -6.8125 | 0.5312 | 0.4004 | -968.0 | -960.0 | -5.9062 | -6.9688 |
0.0173 | 2.4071 | 2300 | 1.1893 | -6.3438 | -6.75 | 0.5293 | 0.3965 | -964.0 | -952.0 | -5.7188 | -6.7812 |
0.0147 | 2.5118 | 2400 | 1.2635 | -6.7188 | -7.125 | 0.5176 | 0.3926 | -1000.0 | -992.0 | -5.375 | -6.4688 |
0.016 | 2.6164 | 2500 | 1.2629 | -6.75 | -7.125 | 0.5195 | 0.375 | -1000.0 | -992.0 | -5.3125 | -6.4062 |
0.0171 | 2.7211 | 2600 | 1.2716 | -6.8438 | -7.2188 | 0.5176 | 0.3809 | -1012.0 | -1004.0 | -5.125 | -6.2188 |
0.0123 | 2.8257 | 2700 | 1.2615 | -6.875 | -7.25 | 0.5195 | 0.3867 | -1016.0 | -1008.0 | -5.0 | -6.0938 |
0.0198 | 2.9304 | 2800 | 1.2575 | -6.8438 | -7.25 | 0.5215 | 0.3887 | -1012.0 | -1004.0 | -5.0 | -6.125 |
Framework versions
- Transformers 4.45.1
- Pytorch 2.3.0
- Datasets 3.0.1
- Tokenizers 0.20.0
- Downloads last month
- 4
Inference API (serverless) does not yet support model repos that contain custom code.