File size: 7,270 Bytes
ecc7fc7
 
 
 
 
a71f911
ecc7fc7
 
 
 
 
 
 
 
 
 
 
 
 
a81887f
d33ba1c
 
a81887f
 
 
d33ba1c
a81887f
 
ecc7fc7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a81887f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ecc7fc7
 
 
 
a81887f
ecc7fc7
a81887f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
---
library_name: transformers
tags:
- trl
- dpo
- alignment-handbook
- generated_from_trainer
model-index:
- name: OpenELM-1_1B-DPO-full-most-similar
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# OpenELM-1_1B-DPO-full-most-similar

This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2575
- Rewards/chosen: -6.8438
- Rewards/rejected: -7.25
- Rewards/accuracies: 0.5215
- Rewards/margins: 0.3887
- Logps/rejected: -1012.0
- Logps/chosen: -1004.0
- Logits/rejected: -5.0
- Logits/chosen: -6.125

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6224        | 0.1047 | 100  | 0.6811          | -0.4375        | -0.4980          | 0.5566             | 0.0618          | -338.0         | -362.0       | -12.25          | -12.5         |
| 0.624         | 0.2093 | 200  | 0.6957          | -0.8281        | -0.8867          | 0.5176             | 0.0569          | -378.0         | -402.0       | -11.0           | -11.4375      |
| 0.6062        | 0.3140 | 300  | 0.7007          | -0.5938        | -0.6289          | 0.5078             | 0.0337          | -352.0         | -378.0       | -12.25          | -12.4375      |
| 0.6334        | 0.4186 | 400  | 0.7011          | -1.2656        | -1.3438          | 0.5176             | 0.0815          | -424.0         | -444.0       | -11.375         | -11.75        |
| 0.6236        | 0.5233 | 500  | 0.7273          | -1.1172        | -1.1875          | 0.5527             | 0.0659          | -408.0         | -430.0       | -11.4375        | -11.8125      |
| 0.648         | 0.6279 | 600  | 0.6997          | -1.3438        | -1.3984          | 0.5059             | 0.0508          | -428.0         | -452.0       | -13.75          | -13.625       |
| 0.6131        | 0.7326 | 700  | 0.7108          | -1.4922        | -1.5312          | 0.5293             | 0.0396          | -442.0         | -468.0       | -12.8125        | -12.625       |
| 0.621         | 0.8373 | 800  | 0.7204          | -1.3516        | -1.4141          | 0.5371             | 0.0581          | -430.0         | -454.0       | -14.0625        | -14.0625      |
| 0.6114        | 0.9419 | 900  | 0.7060          | -1.6797        | -1.8125          | 0.5371             | 0.1328          | -470.0         | -486.0       | -13.875         | -13.8125      |
| 0.1659        | 1.0466 | 1000 | 0.8400          | -2.9688        | -3.2188          | 0.5645             | 0.2520          | -608.0         | -616.0       | -7.5            | -8.5625       |
| 0.1767        | 1.1512 | 1100 | 0.9194          | -3.0781        | -3.2188          | 0.5156             | 0.1406          | -612.0         | -624.0       | -12.125         | -13.0         |
| 0.1574        | 1.2559 | 1200 | 0.9110          | -3.8125        | -4.0938          | 0.5332             | 0.2715          | -696.0         | -700.0       | -11.9375        | -12.75        |
| 0.1637        | 1.3605 | 1300 | 0.8868          | -3.5312        | -3.7656          | 0.5410             | 0.2314          | -664.0         | -672.0       | -11.25          | -12.0         |
| 0.1275        | 1.4652 | 1400 | 0.9276          | -3.7031        | -3.9844          | 0.5488             | 0.2754          | -688.0         | -688.0       | -9.0625         | -10.1875      |
| 0.1468        | 1.5699 | 1500 | 0.9168          | -3.9688        | -4.1562          | 0.5352             | 0.1943          | -704.0         | -716.0       | -10.6875        | -11.3125      |
| 0.1427        | 1.6745 | 1600 | 0.9187          | -4.3125        | -4.5625          | 0.5234             | 0.2656          | -744.0         | -748.0       | -10.125         | -11.0         |
| 0.1592        | 1.7792 | 1700 | 0.8701          | -4.6875        | -5.0312          | 0.5586             | 0.3516          | -792.0         | -784.0       | -10.4375        | -11.25        |
| 0.1341        | 1.8838 | 1800 | 0.9226          | -3.9531        | -4.2188          | 0.5391             | 0.2598          | -708.0         | -712.0       | -9.625          | -10.5625      |
| 0.1366        | 1.9885 | 1900 | 0.9103          | -4.1562        | -4.4375          | 0.5234             | 0.2754          | -732.0         | -736.0       | -9.9375         | -10.75        |
| 0.026         | 2.0931 | 2000 | 1.0973          | -5.7812        | -6.125           | 0.5254             | 0.3379          | -900.0         | -896.0       | -6.5            | -7.5312       |
| 0.0178        | 2.1978 | 2100 | 1.1703          | -6.0312        | -6.4375          | 0.5293             | 0.3867          | -932.0         | -924.0       | -6.2188         | -7.2812       |
| 0.019         | 2.3025 | 2200 | 1.1800          | -6.4062        | -6.8125          | 0.5312             | 0.4004          | -968.0         | -960.0       | -5.9062         | -6.9688       |
| 0.0173        | 2.4071 | 2300 | 1.1893          | -6.3438        | -6.75            | 0.5293             | 0.3965          | -964.0         | -952.0       | -5.7188         | -6.7812       |
| 0.0147        | 2.5118 | 2400 | 1.2635          | -6.7188        | -7.125           | 0.5176             | 0.3926          | -1000.0        | -992.0       | -5.375          | -6.4688       |
| 0.016         | 2.6164 | 2500 | 1.2629          | -6.75          | -7.125           | 0.5195             | 0.375           | -1000.0        | -992.0       | -5.3125         | -6.4062       |
| 0.0171        | 2.7211 | 2600 | 1.2716          | -6.8438        | -7.2188          | 0.5176             | 0.3809          | -1012.0        | -1004.0      | -5.125          | -6.2188       |
| 0.0123        | 2.8257 | 2700 | 1.2615          | -6.875         | -7.25            | 0.5195             | 0.3867          | -1016.0        | -1008.0      | -5.0            | -6.0938       |
| 0.0198        | 2.9304 | 2800 | 1.2575          | -6.8438        | -7.25            | 0.5215             | 0.3887          | -1012.0        | -1004.0      | -5.0            | -6.125        |


### Framework versions

- Transformers 4.45.1
- Pytorch 2.3.0
- Datasets 3.0.1
- Tokenizers 0.20.0