OpenELM-1_1B-DPO-new-3

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8334
  • Rewards/chosen: -9.6875
  • Rewards/rejected: -11.875
  • Rewards/accuracies: 0.7188
  • Rewards/margins: 2.2031
  • Logps/rejected: -1472.0
  • Logps/chosen: -1280.0
  • Logits/rejected: -1.8125
  • Logits/chosen: -3.4688

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.6101 0.1047 100 0.6189 -0.8633 -1.1562 0.6660 0.2930 -402.0 -400.0 -8.1875 -8.3125
0.6173 0.2093 200 0.6125 -1.2812 -1.6484 0.6660 0.3711 -452.0 -442.0 -12.9375 -12.75
0.6488 0.3140 300 0.6205 -2.0781 -2.5625 0.6484 0.4824 -544.0 -524.0 -12.6875 -12.75
0.5965 0.4186 400 0.6005 -2.3594 -3.0156 0.7148 0.6641 -588.0 -548.0 -11.4375 -11.4375
0.5706 0.5233 500 0.5759 -2.0312 -2.5781 0.6875 0.5391 -544.0 -520.0 -10.75 -11.125
0.5348 0.6279 600 0.5724 -3.3125 -4.0938 0.7109 0.7695 -696.0 -644.0 -7.7812 -8.5625
0.5711 0.7326 700 0.5678 -3.2656 -4.0625 0.7168 0.8047 -692.0 -640.0 -7.25 -8.125
0.5505 0.8373 800 0.5683 -2.7031 -3.4062 0.7070 0.7031 -628.0 -584.0 -8.875 -9.625
0.5827 0.9419 900 0.5685 -2.7812 -3.4688 0.7188 0.6797 -632.0 -592.0 -9.0 -10.0
0.2372 1.0466 1000 0.5875 -3.6719 -4.7188 0.7324 1.0312 -756.0 -684.0 -7.4375 -8.9375
0.1955 1.1512 1100 0.5973 -4.4375 -5.5625 0.7285 1.1094 -844.0 -760.0 -6.875 -8.4375
0.1976 1.2559 1200 0.6059 -5.125 -6.25 0.7324 1.1328 -912.0 -828.0 -4.6562 -6.1875
0.1999 1.3605 1300 0.6134 -5.7812 -6.8438 0.7109 1.0781 -972.0 -892.0 -4.875 -6.3125
0.1733 1.4652 1400 0.6179 -6.4375 -7.5625 0.6992 1.125 -1040.0 -956.0 -4.5 -5.75
0.1586 1.5699 1500 0.6041 -5.6562 -6.875 0.7188 1.2031 -972.0 -880.0 -6.75 -8.0
0.1939 1.6745 1600 0.6094 -5.7812 -6.9375 0.7285 1.1719 -980.0 -892.0 -6.0 -7.2812
0.1753 1.7792 1700 0.6206 -6.4062 -7.6875 0.7148 1.2891 -1056.0 -956.0 -4.7188 -6.0625
0.1609 1.8838 1800 0.6048 -6.0 -7.25 0.7266 1.25 -1012.0 -916.0 -5.3438 -6.6875
0.1532 1.9885 1900 0.6346 -6.9688 -8.375 0.7344 1.4141 -1128.0 -1012.0 -4.75 -6.1562
0.0151 2.0931 2000 0.7192 -8.0625 -9.8125 0.7246 1.7266 -1264.0 -1120.0 -3.6406 -5.25
0.0221 2.1978 2100 0.8640 -10.0625 -12.3125 0.7227 2.25 -1520.0 -1320.0 -2.2188 -3.8906
0.0351 2.3025 2200 0.7923 -8.875 -11.0 0.7246 2.0938 -1384.0 -1200.0 -2.6875 -4.3125
0.017 2.4071 2300 0.8024 -9.125 -11.25 0.7148 2.1094 -1416.0 -1232.0 -2.0312 -3.6562
0.0202 2.5118 2400 0.8169 -9.25 -11.375 0.7090 2.1094 -1424.0 -1240.0 -2.125 -3.8125
0.0122 2.6164 2500 0.8391 -9.75 -11.9375 0.7129 2.2031 -1480.0 -1288.0 -1.7188 -3.375
0.0173 2.7211 2600 0.8294 -9.625 -11.8125 0.7168 2.1875 -1464.0 -1280.0 -1.7891 -3.4375
0.0217 2.8257 2700 0.8316 -9.6875 -11.875 0.7188 2.2031 -1472.0 -1280.0 -1.7578 -3.4062
0.0179 2.9304 2800 0.8334 -9.6875 -11.875 0.7188 2.2031 -1472.0 -1280.0 -1.8125 -3.4688

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.3.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
9
Safetensors
Model size
1.08B params
Tensor type
BF16
·
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.