OpenELM-1_1B-SLiC

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Logits/chosen: -10.0625
  • Logits/rejected: -8.75
  • Logps/chosen: -752.0
  • Logps/rejected: -824.0
  • Loss: 0.6883
  • Rewards/accuracies: 0.7344
  • Rewards/chosen: -4.3438
  • Rewards/margins: 0.9922
  • Rewards/rejected: -5.3438

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Logits/chosen Logits/rejected Logps/chosen Logps/rejected Validation Loss Rewards/accuracies Rewards/chosen Rewards/margins Rewards/rejected
0.7634 0.1047 100 -13.0625 -12.9375 -392.0 -392.0 0.7878 0.6406 -0.7461 0.2832 -1.0312
0.7498 0.2093 200 -12.75 -12.4375 -436.0 -444.0 0.7468 0.6719 -1.1719 0.3809 -1.5547
0.8142 0.3140 300 -14.8125 -14.75 -504.0 -516.0 0.7466 0.6914 -1.8594 0.4141 -2.2812
0.7764 0.4186 400 -14.5625 -14.4375 -516.0 -528.0 0.7499 0.6699 -1.9688 0.4316 -2.4062
0.731 0.5233 500 -11.0 -10.5 -560.0 -576.0 0.7240 0.6914 -2.4219 0.4375 -2.8594
0.665 0.6279 600 -10.75 -10.0625 -660.0 -696.0 0.7045 0.6973 -3.4062 0.6680 -4.0625
0.6806 0.7326 700 -13.875 -13.4375 -568.0 -604.0 0.6912 0.7070 -2.5156 0.6523 -3.1562
0.6597 0.8373 800 -13.5 -13.3125 -548.0 -576.0 0.7087 0.6777 -2.2969 0.5664 -2.8594
0.7325 0.9419 900 -14.0 -13.25 -588.0 -624.0 0.6838 0.7090 -2.6875 0.6602 -3.3594
0.2677 1.0466 1000 -12.1875 -11.0625 -640.0 -688.0 0.6726 0.7070 -3.2344 0.7734 -4.0
0.2256 1.1512 1100 -11.125 -10.0625 -676.0 -728.0 0.6992 0.7090 -3.5938 0.7969 -4.375
0.1954 1.2559 1200 -11.3125 -10.125 -664.0 -720.0 0.7033 0.7051 -3.4688 0.8477 -4.3125
0.2289 1.3605 1300 -11.0 -9.9375 -692.0 -740.0 0.6722 0.7344 -3.7344 0.7852 -4.5
0.2227 1.4652 1400 -12.5 -11.8125 -676.0 -720.0 0.6925 0.6953 -3.5781 0.7383 -4.3125
0.1902 1.5699 1500 -12.0625 -11.125 -736.0 -792.0 0.6758 0.7148 -4.1875 0.8320 -5.0312
0.2192 1.6745 1600 -13.625 -12.875 -704.0 -748.0 0.6833 0.7148 -3.8438 0.7695 -4.625
0.2137 1.7792 1700 -11.9375 -11.0 -716.0 -764.0 0.6734 0.7207 -3.9688 0.8008 -4.7812
0.2001 1.8838 1800 -12.125 -11.3125 -692.0 -740.0 0.6734 0.7207 -3.7344 0.7617 -4.5
0.1713 1.9885 1900 -10.4375 -9.25 -712.0 -768.0 0.6680 0.7383 -3.9375 0.8789 -4.8125
0.0184 2.0931 2000 -11.0625 -9.875 -704.0 -768.0 0.6845 0.7305 -3.8594 0.9453 -4.8125
0.0313 2.1978 2100 -11.25 -10.125 -720.0 -784.0 0.6798 0.7402 -4.0 0.9570 -4.9688
0.0401 2.3025 2200 -10.6875 -9.375 -732.0 -800.0 0.6865 0.7363 -4.1562 0.9492 -5.0938
0.0211 2.4071 2300 -10.125 -8.75 -740.0 -812.0 0.6874 0.7383 -4.2188 1.0078 -5.2188
0.0239 2.5118 2400 -10.1875 -8.875 -736.0 -800.0 0.6858 0.7383 -4.1562 0.9766 -5.125
0.0188 2.6164 2500 -10.125 -8.8125 -744.0 -816.0 0.6902 0.7324 -4.2812 0.9883 -5.25
0.0145 2.7211 2600 -10.125 -8.8125 -748.0 -816.0 0.6874 0.7383 -4.2812 0.9844 -5.2812
0.0229 2.8257 2700 -10.0625 -8.75 -752.0 -824.0 0.6883 0.7344 -4.3438 0.9922 -5.3438
0.0298 2.9304 2800 -10.0625 -8.75 -752.0 -824.0 0.6883 0.7344 -4.3438 0.9922 -5.3438

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.3.0
  • Datasets 3.0.0
  • Tokenizers 0.19.1
Downloads last month
17
Safetensors
Model size
1.08B params
Tensor type
BF16
·
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.