OpenELM-1_1B-SimPO

This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:

  • Logits/chosen: -0.5781
  • Logits/rejected: 1.2422
  • Logps/chosen: -113.0
  • Logps/rejected: -171.0
  • Loss: 0.8496
  • Nll Loss: 0.0
  • Rewards/accuracies: 0.6680
  • Rewards/chosen: -1.1328
  • Rewards/margins: 0.5742
  • Rewards/rejected: -1.7031

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Logits/chosen Logits/rejected Logps/chosen Logps/rejected Validation Loss Nll Loss Rewards/accuracies Rewards/chosen Rewards/margins Rewards/rejected
0.9346 0.1047 100 -8.5625 -7.9688 -33.25 -41.75 0.9349 0.0 0.6133 -0.3320 0.0864 -0.4180
0.9139 0.2093 200 -3.4531 -2.4375 -48.5 -63.5 0.9069 0.0 0.6270 -0.4844 0.1504 -0.6367
0.907 0.3140 300 -5.1875 -4.0 -69.5 -83.5 0.9099 0.0 0.6055 -0.6914 0.1416 -0.8359
0.901 0.4186 400 -1.7422 0.0164 -84.0 -101.0 0.8957 0.0 0.6328 -0.8359 0.1748 -1.0156
0.8752 0.5233 500 -0.5625 0.8555 -72.5 -95.5 0.8768 0.0 0.6582 -0.7266 0.2324 -0.9570
0.8808 0.6279 600 2.1562 3.2344 -86.0 -109.5 0.8742 0.0 0.6445 -0.8633 0.2334 -1.0938
0.8277 0.7326 700 -0.7930 0.3496 -52.0 -77.5 0.8679 0.0 0.6445 -0.5195 0.2520 -0.7734
0.8341 0.8373 800 0.2188 1.3047 -80.5 -108.5 0.8503 0.0 0.6602 -0.8047 0.2773 -1.0859
0.8333 0.9419 900 0.6406 1.8438 -90.0 -121.5 0.8454 0.0 0.6660 -0.8984 0.3184 -1.2188
0.8071 1.0466 1000 0.1504 1.3516 -100.0 -133.0 0.8441 0.0 0.6699 -1.0 0.3340 -1.3359
0.7845 1.1512 1100 -1.5078 0.3301 -84.5 -122.5 0.8307 0.0 0.6660 -0.8477 0.3809 -1.2266
0.7483 1.2559 1200 -0.4160 0.9805 -94.5 -133.0 0.8353 0.0 0.6758 -0.9453 0.3809 -1.3281
0.7802 1.3605 1300 -1.5859 0.3418 -62.0 -100.5 0.8363 0.0 0.7051 -0.6211 0.3828 -1.0
0.7499 1.4652 1400 -0.1719 1.4531 -97.0 -141.0 0.8228 0.0 0.7012 -0.9727 0.4414 -1.4141
0.6966 1.5699 1500 -0.3301 1.5 -106.0 -152.0 0.8231 0.0 0.6836 -1.0625 0.4609 -1.5234
0.6921 1.6745 1600 0.6133 2.25 -107.0 -155.0 0.8222 0.0 0.6875 -1.0703 0.4766 -1.5469
0.7162 1.7792 1700 0.6992 2.4688 -103.0 -154.0 0.8106 0.0 0.6953 -1.0312 0.5078 -1.5391
0.714 1.8838 1800 0.0579 2.1875 -109.5 -162.0 0.8183 0.0 0.6855 -1.0938 0.5312 -1.625
0.7068 1.9885 1900 0.3184 1.9922 -97.5 -151.0 0.8164 0.0 0.7031 -0.9727 0.5352 -1.5078
0.4781 2.0931 2000 0.0977 1.7344 -119.0 -171.0 0.8475 0.0 0.6797 -1.1875 0.5273 -1.7109
0.4964 2.1978 2100 -0.9258 0.9219 -100.0 -155.0 0.8455 0.0 0.6875 -1.0 0.5547 -1.5547
0.4723 2.3025 2200 -0.4648 1.2969 -110.0 -166.0 0.8475 0.0 0.6934 -1.1016 0.5586 -1.6562
0.5051 2.4071 2300 -0.2891 1.4141 -113.0 -170.0 0.8480 0.0 0.6895 -1.1328 0.5664 -1.6953
0.4647 2.5118 2400 -0.3496 1.4531 -114.0 -171.0 0.8463 0.0 0.6758 -1.1406 0.5742 -1.7188
0.4442 2.6164 2500 -0.1436 1.5859 -123.5 -180.0 0.8527 0.0 0.6680 -1.2344 0.5664 -1.7969
0.4349 2.7211 2600 -0.5898 1.2422 -112.0 -169.0 0.8505 0.0 0.6699 -1.1172 0.5742 -1.6953
0.4514 2.8257 2700 -0.6406 1.1953 -112.0 -169.0 0.8493 0.0 0.6738 -1.1172 0.5781 -1.6953
0.459 2.9304 2800 -0.5781 1.2422 -113.0 -171.0 0.8496 0.0 0.6680 -1.1328 0.5742 -1.7031

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.3.0
  • Datasets 3.0.0
  • Tokenizers 0.19.1
Downloads last month
6
Safetensors
Model size
1.08B params
Tensor type
BF16
·
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.