Uploaded model

  • Developed by: Chasottco
  • License: apache-2.0
  • Finetuned from model : llm-jp/llm-jp-3-13b

This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.


Google Colabでの動作を想定

# 必要なライブラリをインストール
%%capture
!pip install unsloth
!pip uninstall unsloth -y && pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
!pip install -U torch
!pip install -U peft

# 必要なライブラリを読み込み
from unsloth import FastLanguageModel
from peft import PeftModel
import torch
import json
from tqdm import tqdm
import re

# ベースとなるモデルと学習したLoRAのアダプタ(Hugging FaceのIDを指定)
model_id = "llm-jp/llm-jp-3-13b"
adapter_id = "Chasottco/llm-jp-3-13b-it-Chasottco"

# Hugging Face Token を指定
HF_TOKEN = ""

# unslothのFastLanguageModelで元のモデルをロード
dtype = None # Noneにしておけば自動で設定
load_in_4bit = True # 今回は13Bモデルを扱うためTrue

model, tokenizer = FastLanguageModel.from_pretrained(
    model_name=model_id,
    dtype=dtype,
    load_in_4bit=load_in_4bit,
    trust_remote_code=True,
)

# 元のモデルにLoRAのアダプタを統合
model = PeftModel.from_pretrained(model, adapter_id, token=HF_TOKEN)

# google drive mount(事前にデータをアップロード)
from google.colab import drive
drive.mount('/content/drive')

# タスクとなるデータの読み込み
datasets = []
with open("/content/drive/MyDrive/2024松尾研LLM/elyza-tasks-100-TV_0.jsonl", "r") as f:
    item = ""
    for line in f:
        line = line.strip()
        item += line
        if item.endswith("}"):
            datasets.append(json.loads(item))
            item = ""


# モデルを用いてタスクの推論
FastLanguageModel.for_inference(model)

results = []
for dt in tqdm(datasets):
    input = dt["input"]

    prompt = f"""### 指示\n{input}\n### 回答\n"""

    inputs = tokenizer([prompt], return_tensors="pt").to(model.device)

    outputs = model.generate(**inputs, max_new_tokens=512, use_cache=True, do_sample=False, repetition_penalty=1.2)
    prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]

    results.append({"task_id": dt["task_id"], "input": input, "output": prediction})

---
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Chasottco/llm-jp-3-13b-it-Chasottco

Finetuned
(1128)
this model