Fill-Mask
Transformers
Safetensors
esm
svincoff's picture
uploading data folder
1e6a1f0
## Imports
import pandas as pd
import numpy as np
import os
import sys
import pickle
from fuson_plm.utils.constants import TCGA_CODES, FODB_CODES, VALID_AAS, DELIMITERS
from fuson_plm.utils.logging import open_logfile, log_update
from fuson_plm.utils.data_cleaning import clean_rows_and_cols, check_columns_for_listlike, check_item_for_listlike, find_delimiters, find_invalid_chars
from fuson_plm.data.config import CLEAN
def clean_fusionpdb(fusionpdb: pd.DataFrame, tcga_codes, delimiters, valid_aas) -> pd.DataFrame:
"""
Return a cleaned version of the raw FusionPDB database, downloaded from FusionPDB website "Level 1" link
Args:
fusionpdb (pd.DataFrame): The raw FusionPDB database
delimiters: delimiters to check for
Returns:
pd.DataFrame: A cleaned version of the raw FusionPDB database with no duplicate sequences.
Columns:
- `aa_seq`: amino acid sequence of fusion oncoprotein. each is unique.
- `n_fusiongenes`: total number of fusion genes with this amino acid sequence.
- `fusiongenes`: comma-separated list of fusion genes (hgene::tgene) for this sequence. e.g., "MINK1::SPNS3,UBE2G1::SPNS3"
- `cancers`: comma-separated list of cancer types for this sequence. e.g., "breast invasive carcinoma,stomach adenocarcinoma"
- `primary_source`: source FusionPDB pulled the data from
- `secondary_source`:
"""
# Process and clean FusionPDB database
log_update("Cleaning FusionPDB raw data")
# FusionPDB is downloaded with no column labels. Fill in column labels here.
log_update(f"\tfilling in column names...")
fusionpdb = fusionpdb.rename(columns={
0: 'ORF_type',
1: 'hgene_ens',
2: 'tgene_ens',
3: '', # no data in this column
4: 'primary_source', # database FusionPDB pulled from
5: 'cancer',
6: 'database_id',
7: 'hgene',
8: 'hgene_chr',
9: 'hgene_bp',
10: 'hgene_strand',
11: 'tgene',
12: 'tgene_chr',
13: 'tgene_bp',
14: 'tgene_strand',
15: 'bp_dna_transcript',
16: 'dna_transcript',
17: 'aa_seq_len',
18: 'aa_seq',
19: 'predicted_start_dna_transcript',
20: 'predicted_end_dna_transcript'
})
# Clean rows and columns
fusionpdb = clean_rows_and_cols(fusionpdb)
# Check for list-like qualities in the columns we plan to keep
cols_of_interest = ['hgene','tgene','cancer','aa_seq','primary_source']
listlike_dict = check_columns_for_listlike(fusionpdb, cols_of_interest, delimiters)
# Add a new column for fusiongene, which combines hgene::tgene. e.g., EWS::FLI1
log_update("\tadding a column for fusiongene = hgene::tgene")
fusionpdb['fusiongene'] = (fusionpdb['hgene'] + '::' + fusionpdb['tgene']).astype(str)
# Make 'cancer' column type string to ease downstream processing
log_update("\tcleaning the cancer column...")
# turn '.' and nan entries into empty string
fusionpdb = fusionpdb.replace('.',np.nan)
fusionpdb['cancer'] = fusionpdb['cancer'].astype(str).replace('nan','')
log_update("\t\tconverting cancer acronyms into full cancer names...")
fusionpdb['cancer'] = fusionpdb['cancer'].apply(lambda x: tcga_codes[x].lower() if x in tcga_codes else x.lower())
log_update("\t\tconverting all lists into comma-separated...")
fusionpdb['cancer'] = fusionpdb['cancer'].str.replace(';',',')
fusionpdb['cancer'] = fusionpdb['cancer'].str.replace(', ', ',')
fusionpdb['cancer'] = fusionpdb['cancer'].str.strip()
fusionpdb['cancer'] = fusionpdb['cancer'].str.strip(',')
log_update(f"\t\tchecking for delimiters in the cleaned column...")
check_columns_for_listlike(fusionpdb, ['cancer'], delimiters)
# Now that we've dealt with listlike instances, make dictionary of hgene and tgene to their ensembl strings
log_update("\tcreating dictionary of head and tail genes mapped to Ensembl IDs, to be used later for aquiring UniProtAcc for head and tail genes (needed for BLAST analysis)")
hgene_to_ensembl_dict = fusionpdb.groupby('hgene').agg(
{
'hgene_ens': lambda x: ','.join(set(x))
}
).reset_index()
hgene_to_ensembl_dict = dict(zip(hgene_to_ensembl_dict['hgene'],hgene_to_ensembl_dict['hgene_ens']))
tgene_to_ensembl_dict = fusionpdb.groupby('tgene').agg(
{
'tgene_ens': lambda x: ','.join(set(x))
}
).reset_index()
tgene_to_ensembl_dict = dict(zip(tgene_to_ensembl_dict['tgene'],tgene_to_ensembl_dict['tgene_ens']))
# now, we might have some of the same heads and tails being mapped to different things
all_keys = set(hgene_to_ensembl_dict.keys()).union(set(tgene_to_ensembl_dict.keys()))
gene_to_ensembl_dict = {}
for k in all_keys:
ens = hgene_to_ensembl_dict.get(k,'') + ',' + tgene_to_ensembl_dict.get(k,'')
ens = ','.join(set(list(ens.strip(',').split(','))))
gene_to_ensembl_dict[k] = ens
os.makedirs("head_tail_data",exist_ok=True)
with open(f"head_tail_data/gene_to_ensembl_dict.pkl", "wb") as f:
pickle.dump(gene_to_ensembl_dict, f)
total_unique_ens_ids = list(gene_to_ensembl_dict.values())
total_unique_ens_ids = set(",".join(total_unique_ens_ids).split(","))
log_update(f"\t\tTotal unique head/tail genes: {len(gene_to_ensembl_dict)}\n\t\tTotal unique ensembl ids: {len(total_unique_ens_ids)}")
# To deal with duplicate sequences, group FusionPDB by sequence and concatenate fusion gene names, cancer types, and primary source
log_update(f"\tchecking FusionPDB for duplicate protein sequences...\n\t\toriginal size: {len(fusionpdb)}")
duplicates = fusionpdb[fusionpdb.duplicated('aa_seq')]['aa_seq'].unique().tolist()
n_fgenes_with_duplicates = len(fusionpdb[fusionpdb['aa_seq'].isin(duplicates)]['fusiongene'].unique())
n_rows_with_duplicates = len(fusionpdb[fusionpdb['aa_seq'].isin(duplicates)])
log_update(f"\t\t{len(duplicates)} duplicated sequences, corresponding to {n_rows_with_duplicates} rows and {n_fgenes_with_duplicates} distinct fusiongenes")
log_update(f"\tgrouping FusionPDB by amino acid sequence...")
# Merge step
fusionpdb = pd.merge(
fusionpdb.groupby('aa_seq').agg({
'fusiongene': lambda x: x.nunique()}).reset_index().rename(columns={'fusiongene':'n_fusiongenes'}),
fusionpdb.groupby('aa_seq').agg({
'fusiongene': lambda x: ','.join(x),
'cancer': lambda x: ','.join(x),
'primary_source': lambda x: ','.join(x)}).reset_index().rename(columns={'fusiongene':'fusiongenes', 'cancer': 'cancers', 'primary_source':'primary_sources'}).reset_index(drop=True).rename(columns={'fusiongene':'fusiongenes'}),
on='aa_seq'
)
# Turn each aggregated column into sorted, comma-separated list
fusionpdb['fusiongenes'] = fusionpdb['fusiongenes'].apply(lambda x: (',').join(sorted(set(x.split(','))))).str.strip(',')
fusionpdb['cancers'] = fusionpdb['cancers'].apply(lambda x: (',').join(sorted(set(x.split(','))))).str.strip(',')
fusionpdb['primary_sources'] = fusionpdb['primary_sources'].apply(lambda x: (',').join(sorted(set(x.split(','))))).str.strip(',')
# Count and display sequences with >1 fusion gene
duplicates = fusionpdb.loc[fusionpdb['n_fusiongenes']>1]['aa_seq'].tolist()
log_update(f"\t\treorganized database contains {len(duplicates)} proteins with >1 fusion gene")
log_update(f"\t\treorganized database contains {len(fusionpdb)} unique oncofusion sequences")
# Find invalid amino acids for each sequence and log_update the results
fusionpdb['invalid_chars'] = fusionpdb['aa_seq'].apply(lambda x: find_invalid_chars(x, valid_aas))
fusionpdb[fusionpdb['invalid_chars'].str.len()>0].sort_values(by='aa_seq')
all_invalid_chars = set().union(*fusionpdb['invalid_chars'])
log_update(f"\tchecking for invalid characters...\n\t\tset of all invalid characters discovered within FusionPDB: {all_invalid_chars}")
# Filter out any sequences with invalid amino acids
fusionpdb = fusionpdb[fusionpdb['invalid_chars'].str.len()==0].reset_index(drop=True).drop(columns=['invalid_chars'])
log_update(f"\tremoving invalid characters...\n\t\tremaining sequences with valid AAs only: {len(fusionpdb)}")
# Add a column for secondary source - FusionPDB.
fusionpdb['secondary_source'] = ['FusionPDB']*len(fusionpdb)
# Final checks of database cleanliness
log_update(f"\tperforming final checks on cleaned FusionPDB...")
duplicates = len(fusionpdb.loc[fusionpdb['aa_seq'].duplicated()]['aa_seq'].tolist())
log_update(f"\t\t{duplicates} duplicate sequences")
invalids=0
for x in all_invalid_chars:
invalids += len(fusionpdb.loc[fusionpdb['aa_seq'].str.contains(x)])
log_update(f"\t\t{invalids} proteins containing invalid chracters")
all_unique_seqs = len(fusionpdb)==len(fusionpdb['aa_seq'].unique())
log_update(f"\t\tevery row contains a unique oncofusion sequence: {all_unique_seqs}")
return fusionpdb
def clean_fodb(fodb: pd.DataFrame, fodb_codes, delimiters, valid_aas) -> pd.DataFrame:
"""
Cleans the FOdb database
Args:
fodb (pd.DataFrame): raw FOdb.
fodb_codes:
delimiters:
valid_aas:
Returns:
pd.DataFrame: a cleaned version of FOdb with no duplicate sequences.
Columns:
- `aa_seq`: amino acid sequence of fusion oncoprotein. each is unique.
- `n_fusiongenes`: total number of fusion genes with this amino acid sequence.
- `fusiongenes`: comma-separated list of fusion genes (hgene::tgene) for this sequence. e.g., "MINK1::SPNS3,UBE2G1::SPNS3"
- `cancers`: comma-separated list of cancer types for this sequence. e.g., "breast invasive carinoma,stomach adenocarcinoma"
- `primary_source`: source FOdb pulled the data from
- `secondary_source`: FOdb
"""
log_update("Cleaning FOdb raw data")
fodb['FO_Name'] = fodb['FO_Name'].apply(lambda x: x.split("_")[0]+"::"+x.split("_")[1])
fodb = fodb.rename(columns={'Sequence_Source': 'primary_source', 'FO_Name': 'fusiongene', 'AA_Sequence': 'aa_seq'})
fodb.head()
# Clean rows and columns
fodb = clean_rows_and_cols(fodb)
# HEY1::NCOA2 has a "-" on the end by mistake. Replace this with '' for benchmarking purposes
special_seq = "MKRAHPEYSSSDSELDETIEVEKESADENGNLSSALGSMSPTTSSQILARKRRRGIIEKRRRDRINNSLSELRRLVPSAFEKQGSAKLEKAEILQMTVDHLKMLHTAGGKAFNNPRPGQLGRLLPNQNLPLDITLQSPTGAGPFPPIRNSSPYSVIPQPGMMGNQGMIGNQGNLGNSSTGMIGNSASRPTMPSGEWAPQSSAVRVTCAATTSAMNRPVQGGMIRNPAASIPMRPSSQPGQRQTLQSQVMNIGPSELEMNMGGPQYSQQQAPPNQTAPWPESILPIDQASFASQNRQPFGSSPDDLLCPHPAAESPSDEGALLDQLYLALRNFDGLEEIDRALGIPELVSQSQAVDPEQFSSQDSNIMLEQKAPVFPQQYASQAQMAQGSYSPMQDPNFHTMGQRPSYATLRMQPRPGLRPTGLVQNQPNQLRLQLQHRLQAQQNRQPLMNQISNVSNVNLTLRPGVPTQAPINAQMLAQRQREILNQHLRQRQMHQQQQVQQRTLMMRGQGLNMTPSMVAPSGIPATMSNPRIPQANAQQFPFPPNYGISQQPDPGFTGATTPQSPLMSPRMAHTQSPMMQQSQANPAYQAPSDINGWAQGNMGGNSMFSQQSPPHFGQQANTSMYSNNMNINVSMATNTGGMSSMNQMTGQISMTSVTSVPTSGLSSMGPEQVNDPALRGGNLFPNQLPGMDMIKQEGDTTRKYC-"
special_seq_name = "HEY1::NCOA2"
fodb.loc[
(fodb['fusiongene']==special_seq_name) &
(fodb['aa_seq']==special_seq), 'aa_seq'
] = special_seq.replace('-','')
# filter out anything remaining with invalid characters
fodb['invalid_chars'] = fodb['aa_seq'].apply(lambda x: find_invalid_chars(x, valid_aas))
all_invalid_chars = set().union(*fodb['invalid_chars'])
log_update(f"\tchecking for invalid characters...\n\t\tset of all invalid characters discovered within FOdb: {all_invalid_chars}")
fodb = fodb[fodb['invalid_chars'].str.len()==0].reset_index(drop=True).drop(columns=['invalid_chars'])
log_update(f"\tremoving invalid characters...\n\t\tremaining sequences with valid AAs only: {len(fodb)}")
# aggregate the cancer data - if there's a 1 in the column, add it to the list of affected cancers
# acronym -> cancer conversions based on Supplementary Table 3 of FOdb paper (Tripathi et al. 2023 Defining)
log_update(f"\taggregating cancer data from {len(fodb.columns)-4} individual cancer columns into one...")
log_update(f"\t\tchanging cancer names from acronyms to full")
cancers = list(fodb.columns)[4::]
fodb['cancers'] = ['']*len(fodb)
for cancer in cancers:
mapped_cancer = fodb_codes[cancer].lower() if cancer in fodb_codes else cancer
fodb['cancers'] = fodb.apply(
lambda row: row['cancers'] + f'{mapped_cancer},' if row[cancer] == 1 else row['cancers'],
axis=1
)
fodb['cancers'] = fodb['cancers'].str.strip(',').replace('nan','')
fodb = fodb.drop(columns=['Patient_Count']+cancers)
# Check for list-like qualities in the columns we plan to keep
cols_of_interest = ['primary_source','fusiongene','aa_seq','cancers']
listlike_dict = check_columns_for_listlike(fodb, cols_of_interest, delimiters)
# To deal with duplicate sequences, group fodb by sequence and concatenate fusion gene names, cancer types, and primary source
log_update(f"\tchecking fodb for duplicate protein sequences...\n\t\toriginal size: {len(fodb)}")
duplicates = fodb[fodb.duplicated('aa_seq')]['aa_seq'].unique().tolist()
n_fgenes_with_duplicates = len(fodb[fodb['aa_seq'].isin(duplicates)]['fusiongene'].unique())
n_rows_with_duplicates = len(fodb[fodb['aa_seq'].isin(duplicates)])
log_update(f"\t\t{len(duplicates)} duplicated sequences, corresponding to {n_rows_with_duplicates} rows and {n_fgenes_with_duplicates} distinct fusiongenes")
log_update(f"\tgrouping fodb by amino acid sequence...")
# Merge step
fodb = pd.merge(
fodb.groupby('aa_seq').agg({
'fusiongene': lambda x: x.nunique()}).reset_index().rename(columns={'fusiongene':'n_fusiongenes'}),
fodb.groupby('aa_seq').agg({
'fusiongene': lambda x: ','.join(x),
'cancers': lambda x: ','.join(x),
'primary_source': lambda x: ','.join(x)}).reset_index().rename(columns={'fusiongene':'fusiongenes', 'primary_source':'primary_sources'}).reset_index(drop=True).rename(columns={'fusiongene':'fusiongenes'}),
on='aa_seq'
)
# Turn each aggregated column into sorted, comma-separated list
fodb['fusiongenes'] = fodb['fusiongenes'].apply(lambda x: (',').join(sorted(set(x.split(','))))).str.strip(',')
fodb['cancers'] = fodb['cancers'].apply(lambda x: (',').join(sorted(set(x.split(','))))).str.strip(',')
fodb['primary_sources'] = fodb['primary_sources'].apply(lambda x: (',').join(sorted(set(x.split(','))))).str.strip(',')
# Count and display sequences with >1 fusion gene
duplicates = fodb.loc[fodb['n_fusiongenes']>1]['aa_seq'].tolist()
log_update(f"\t\treorganized database contains {len(duplicates)} proteins with >1 fusion gene")
log_update(f"\t\treorganized database contains {len(fodb)} unique oncofusion sequences")
# Add secondary source column because FOdb is the secondary source here.
fodb['secondary_source'] = ['FOdb']*len(fodb)
# Final checks of database cleanliness
log_update(f"\tperforming final checks on cleaned FOdb...")
duplicates = len(fodb.loc[fodb['aa_seq'].duplicated()]['aa_seq'].tolist())
log_update(f"\t\t{duplicates} duplicate sequences")
invalids=0
for x in all_invalid_chars:
invalids += len(fodb.loc[fodb['aa_seq'].str.contains(x)])
log_update(f"\t\t{invalids} proteins containing invalid chracters")
all_unique_seqs = len(fodb)==len(fodb['aa_seq'].unique())
log_update(f"\t\tevery row contains a unique oncofusion sequence: {all_unique_seqs}")
return fodb
def create_fuson_db(fusionpdb: pd.DataFrame, fodb: pd.DataFrame) -> pd.DataFrame:
"""
Merges cleaned FusionPDB and FOdb to create fuson_db (the full set of fusion sequences for training/benchmarking FusOn-pLM)
Args:
fusionpdb (pd.DataFrame):
"""
log_update("Creating the merged database...")
log_update("\tconcatenating cleaned FusionPDb and cleaned FOdb...")
fuson_db = pd.concat(
[
fusionpdb.rename(columns={'secondary_source':'secondary_sources'}),
fodb.rename(columns={'secondary_source':'secondary_sources'})
]
)
# Handle dupliate amino acid sequences
log_update(f"\tchecking merged database for duplicate protein sequences...\n\t\toriginal size: {len(fuson_db)}")
duplicates = fuson_db[fuson_db.duplicated('aa_seq')]['aa_seq'].unique().tolist()
n_fgenes_with_duplicates = len(fuson_db[fuson_db['aa_seq'].isin(duplicates)]['fusiongenes'].unique())
n_rows_with_duplicates = len(fuson_db[fuson_db['aa_seq'].isin(duplicates)])
log_update(f"\t\t{len(duplicates)} duplicated sequences, corresponding to {n_rows_with_duplicates} rows and {n_fgenes_with_duplicates} distinct fusiongenes")
log_update(f"\tgrouping database by amino acid sequence...")
fuson_db = fuson_db.groupby('aa_seq').agg(
{
'fusiongenes': lambda x: ','.join(x),
'cancers': lambda x: ','.join(x),
'primary_sources': lambda x: ','.join(x),
'secondary_sources': lambda x: ','.join(x)
}
).reset_index()
duplicates = fuson_db.loc[fuson_db['fusiongenes'].str.count(',')>0]['aa_seq'].tolist()
log_update(f"\t\treorganized database contains {len(duplicates)} proteins with >1 fusion gene")
log_update(f"\t\treorganized database contains {len(fuson_db)} unique oncofusion sequences")
# Turn each aggregated column into a set of only the unique entires
for column in fuson_db.columns[1::]:
fuson_db[column] = fuson_db[column].apply(lambda x: (',').join(sorted(set(
[y for y in x.split(',') if len(y)>0]))))
# Add a column for length
log_update(f"\tadding a column for length...")
fuson_db['length'] = fuson_db['aa_seq'].apply(lambda x: len(x))
# Sort by fusiongenes, then length
log_update(f"\tsorting by fusion gene name, then length...")
fuson_db = fuson_db.sort_values(by=['fusiongenes','length'],ascending=[True,True]).reset_index(drop=True)
# Add a seq_id column: seq1, seq2, ..., seqn
log_update(f"\tadding sequence ids: seq1, seq2, ..., seqn")
fuson_db['seq_id'] = ['seq'+str(i+1) for i in range(len(fuson_db))]
# Final checks of database cleanliness
log_update(f"\tperforming final checks on fuson_db...")
duplicates = len(fuson_db.loc[fuson_db['aa_seq'].duplicated()]['aa_seq'].tolist())
log_update(f"\t\t{duplicates} duplicate sequences")
all_unique_seqs = len(fuson_db)==len(fuson_db['aa_seq'].unique())
log_update(f"\t\tevery row contains a unique oncofusion sequence: {all_unique_seqs}")
return fuson_db
def head_tail_mappings(fuson_db):
log_update("\nGenes and Ensembl IDs corresponding to the head and tail proteins have been mapped on UniProt. Now, combining these results.")
# Read the ensembl map, gene name map, and dictionary from gene --> ensembl ids
ensembl_map = pd.read_csv("head_tail_data/ensembl_ht_idmap.txt",sep="\t")
name_map = pd.read_csv("head_tail_data/genename_ht_idmap.txt",sep="\t")
with open("head_tail_data/gene_to_ensembl_dict.pkl", "rb") as f:
gene_ens_dict = pickle.load(f)
log_update(f"\tCheck: ensembl map and gene name map have same columns: {set(ensembl_map.columns)==set(name_map.columns)}")
log_update(f"\t\tColumns = {list(ensembl_map.columns)}")
# Prepare to merge
log_update(f"\tMerging the ensembl map and gene name map:")
ensembl_map = ensembl_map.rename(columns={'From': 'ensembl_id'}) # mapped from ensembl ids
name_map = name_map.rename(columns={'From': 'htgene'}) # mapped from head or tail genes
name_map['ensembl_id'] = name_map['htgene'].map(gene_ens_dict) # add ensembl id column bsed on head and tail genes
name_map['ensembl_id'] = name_map['ensembl_id'].apply(lambda x: x.split(',') if type(x)==str else x) # make it a string if multiple matches
log_update(f"\t\tLength of gene-based map before exploding ensembl_id column: {len(name_map)}")
name_map = name_map.explode('ensembl_id') # explode so each ensembl id is its own line
log_update(f"\t\tLength of gene-based map after exploding ensembl_id column: {len(name_map)}")
log_update(f"\t\tLength of ensembl-based map: {len(ensembl_map)}")
unimap = pd.merge(name_map[['htgene','ensembl_id','Entry','Reviewed']],
ensembl_map[['ensembl_id','Entry','Reviewed']],
on=['ensembl_id','Entry','Reviewed'],
how='outer'
)
unimap['Reviewed'] = unimap['Reviewed'].apply(lambda x: '1' if x=='reviewed' else '0' if x=='unreviewed' else 'N') # N for nan
log_update(f"\t\tLength of merge: {len(unimap)}. Merge preview:")
log_update(unimap.head())
unimap = unimap.drop_duplicates(['htgene','Entry','Reviewed']).reset_index(drop=True)
log_update(f"\t\tLength of merge after dropping rows where only ensembl_id changed: {len(unimap)}. Merge preview: ")
log_update(unimap.head())
unimap = unimap.groupby('htgene').agg(
{
'Entry': lambda x: ','.join(x),
'Reviewed': lambda x: ''.join(x)
}
).reset_index()
unimap = unimap.rename(columns={
'htgene': 'Gene',
'Entry': 'UniProtID',
})
log_update(f"\t\tLength of merge after grouping by gene name: {len(unimap)}. Merge preview:")
log_update(unimap.head())
# what are the proteins whose head or tail genes are in this list?
log_update(f"\tChecking which fusion proteins have unmappable heads and/or tails:")
temp = fuson_db.copy(deep=True)
temp['fusiongenes'] = temp['fusiongenes'].apply(lambda x: x.split(','))
temp = temp.explode('fusiongenes')
temp['hgene'] = temp['fusiongenes'].str.split('::',expand=True)[0]
temp['tgene'] = temp['fusiongenes'].str.split('::',expand=True)[1]
# See which gene IDs weren't covered
log_update(f"\tChecking which gene IDs were not mapped by either method")
all_geneids = temp['hgene'].tolist() +temp['tgene'].tolist()
all_geneids = list(set(all_geneids))
all_mapped_genes = unimap['Gene'].unique().tolist()
unmapped_geneids = set(all_geneids) - set(all_mapped_genes)
log_update(f"\t\t{len(all_mapped_genes)}/{len(all_geneids)} were mapped\n\t\t{len(unmapped_geneids)}/{len(all_geneids)} were unmapped")
log_update(f"\t\tUnmapped geneids: {','.join(unmapped_geneids)}")
# Find the ok ones and print
ok_seqs = temp.loc[
(temp['hgene'].isin(all_mapped_genes)) | # head gene was found, OR
(temp['tgene'].isin(all_mapped_genes)) # tail gene was found
]['seq_id'].unique().tolist()
ok_seqsh = temp.loc[
(temp['hgene'].isin(all_mapped_genes)) # head gene was found
]['seq_id'].unique().tolist()
ok_seqst = temp.loc[
(temp['tgene'].isin(all_mapped_genes)) # tail gene was found
]['seq_id'].unique().tolist()
ok_seqsboth = temp.loc[
(temp['hgene'].isin(all_mapped_genes)) & # head gene was found, AND
(temp['tgene'].isin(all_mapped_genes)) # tail gene was found
]['seq_id'].unique().tolist()
log_update(f"\tTotal fusion sequence ids: {len(temp['seq_id'].unique())}")
log_update(f"\tFusion sequences with at least 1 mapped constituent:\
\n\t\tMapped head: {len(ok_seqsh)}\
\n\t\tMapped tail: {len(ok_seqst)}\
\n\t\tMapped head or tail: {len(ok_seqs)}\
\n\t\tMapped head AND tail: {len(ok_seqsboth)}")
# Now look at the bad side
atleast_1_lost = temp.loc[
((temp['hgene'].isin(unmapped_geneids)) & ~(temp['seq_id'].isin(ok_seqsh))) | # head not found in row, AND head not found for seq_id - OR
((temp['tgene'].isin(unmapped_geneids)) & ~(temp['seq_id'].isin(ok_seqst))) # tail not found in row, AND tail not found for seq_id
]['seq_id'].unique().tolist()
atleast_1_losth = temp.loc[
(temp['hgene'].isin(unmapped_geneids)) & # head not found in this row AND
~(temp['seq_id'].isin(ok_seqsh)) # head not found for this seq id
]['seq_id'].unique().tolist()
atleast_1_lostt = temp.loc[
(temp['tgene'].isin(unmapped_geneids)) & # tail not found in this row AND
~(temp['seq_id'].isin(ok_seqst)) # tail not found for this seq id
]['seq_id'].unique().tolist()
both_lost = temp.loc[
((temp['hgene'].isin(unmapped_geneids)) & ~(temp['seq_id'].isin(ok_seqsh))) & # there's no head, and this seq id has no head - AND
((temp['tgene'].isin(unmapped_geneids)) & ~(temp['seq_id'].isin(ok_seqst))) # there's no tail, and this seq id has no tail
]['seq_id'].unique().tolist()
log_update(f"\tFusion sequences with at least 1 unmapped constituent:")
log_update(f"\t\tUnmapped head: {len(atleast_1_losth)}\
\n\t\tUnmapped tail: {len(atleast_1_lostt)}\
\n\t\tUnmapped head or tail: {len(atleast_1_lost)}\
\n\t\tUnmapped head AND tail: {len(both_lost)}")
log_update(f"\tseq_ids with at least 1 unmapped part: {atleast_1_lost}")
assert len(ok_seqsboth)+ len(atleast_1_lost) == len(temp['seq_id'].unique())
log_update(f"\tFusions with H&T covered plus Fusions with H|T lost = total = {len(ok_seqsboth)}+ {len(atleast_1_lost)} = {len(ok_seqsboth)+ len(atleast_1_lost)} = {len(temp['seq_id'].unique())}")
### Save the unimap
unimap.to_csv('head_tail_data/htgenes_uniprotids.csv',index=False)
def assemble_uniprot_query(path_to_gene_ens_dict="head_tail_data/gene_to_ensembl_dict.pkl",path_to_fuson_db="fuson_db.csv"):
"""
To analyze the BLAST results effectively, we must know which UniProt accessions we *expect* to see for each fusion oncoprotein.
We will try to map each FO to its head and tail accessions by searching UniProt ID map by gene name and Ensembl ID.
This method will create two input lists for UniProt:
- gene_name_inputs.txt: list of all uinque head and tail gene names
- ensembl_inputs.txt
"""
log_update("\nMaking inputs for UniProt ID map, to find accessions for head and tail genes")
if not(os.path.exists(path_to_gene_ens_dict)):
raise Exception(f"File {path_to_gene_ens_dict} does not exist")
with open(path_to_gene_ens_dict, "rb") as f:
gene_ens_dict = pickle.load(f)
all_htgenes_temp = list(gene_ens_dict.keys())
all_ens = list(gene_ens_dict.values())
all_ens = list(set(",".join(all_ens).split(",")))
log_update(f"\tTotal unique head and tail genes, only accounting for FusionPDB: {len(all_htgenes_temp)}")
# need to add other htgenes from UniProt
fuson_db = pd.read_csv(path_to_fuson_db)
fuson_db['fusiongenes'] = fuson_db['fusiongenes'].apply(lambda x: x.split(','))
fuson_db = fuson_db.explode('fusiongenes')
fuson_db['hgene'] = fuson_db['fusiongenes'].str.split('::',expand=True)[0]
fuson_db['tgene'] = fuson_db['fusiongenes'].str.split('::',expand=True)[1]
fuson_htgenes = fuson_db['hgene'].tolist() + fuson_db['tgene'].tolist()
fuson_htgenes = set(fuson_htgenes)
all_htgenes = set(all_htgenes_temp).union(set(fuson_htgenes))
all_htgenes = list(set(all_htgenes))
log_update(f"\tTotal unique head and tail genes after adding FOdb: {len(all_htgenes)}")
log_update(f"\tTotal unique ensembl IDs: {len(all_ens)}")
# go through each and write a file
input_dir = "head_tail_data/uniprot_idmap_inputs"
os.makedirs(input_dir,exist_ok=True)
if os.path.exists(f"{input_dir}/head_tail_genes.txt"):
log_update("\nAlready assembled UniProt ID mapping input for head and tail genes. Continuing")
else:
with open(f"{input_dir}/head_tail_genes.txt", "w") as f:
for i, gene in enumerate(all_htgenes):
if i!=len(all_htgenes)-1:
f.write(f"{gene}\n")
else:
f.write(f"{gene}")
if os.path.exists(f"{input_dir}/head_tail_ens.txt"):
log_update("\nAlready assembled UniProt ID mapping input for head and tail ensembl IDs. Continuing")
else:
with open(f"{input_dir}/head_tail_ens.txt", "w") as f:
for i, ens in enumerate(all_ens):
if i!=len(all_ens)-1:
f.write(f"{ens}\n")
else:
f.write(f"{ens}")
def main():
# Define global variables from config.DATA_CLEANING
FODB_PATH = CLEAN.FODB_PATH
FODB_PUNCTA_PATH = CLEAN.FODB_PUNCTA_PATH
FUSIONPDB_PATH = CLEAN.FUSIONPDB_PATH
LOG_PATH = "data_cleaning_log.txt"
SAVE_CLEANED_FODB = False
# Prepare the log file
with open_logfile(LOG_PATH):
log_update("Loaded data-cleaning configurations from config.py")
CLEAN.print_config(indent='\t')
log_update("Reading FusionPDB...")
fusionpdb = pd.read_csv(FUSIONPDB_PATH,sep='\t',header=None)
fusionpdb = clean_fusionpdb(fusionpdb, TCGA_CODES, DELIMITERS, VALID_AAS)
log_update("Saving FusionPDB to FusionPDB_cleaned.csv...")
fusionpdb.to_csv('raw_data/FusionPDB_cleaned.csv', index=False)
# Clean FOdb, optinoally save
log_update("Reading FOdb...")
fodb = pd.read_csv(FODB_PATH)
fodb = clean_fodb(fodb, FODB_CODES, DELIMITERS, VALID_AAS)
if SAVE_CLEANED_FODB:
log_update("Saving FOdb to FOdb_cleaned.csv...")
fusionpdb.to_csv('FOdb_cleaned.csv', index=False)
# Merge FusionPDB and FOdb to fuson_db
fuson_db = create_fuson_db(fusionpdb, fodb)
# Mark benchmarking sequences
# FOdb puncta benchmark
log_update("Adding benchmarking sequences to fuson_db...")
fodb_puncta = pd.read_csv(FODB_PUNCTA_PATH)
# handle the mistake sequence - take the "-" off the end
special_seq = "MKRAHPEYSSSDSELDETIEVEKESADENGNLSSALGSMSPTTSSQILARKRRRGIIEKRRRDRINNSLSELRRLVPSAFEKQGSAKLEKAEILQMTVDHLKMLHTAGGKAFNNPRPGQLGRLLPNQNLPLDITLQSPTGAGPFPPIRNSSPYSVIPQPGMMGNQGMIGNQGNLGNSSTGMIGNSASRPTMPSGEWAPQSSAVRVTCAATTSAMNRPVQGGMIRNPAASIPMRPSSQPGQRQTLQSQVMNIGPSELEMNMGGPQYSQQQAPPNQTAPWPESILPIDQASFASQNRQPFGSSPDDLLCPHPAAESPSDEGALLDQLYLALRNFDGLEEIDRALGIPELVSQSQAVDPEQFSSQDSNIMLEQKAPVFPQQYASQAQMAQGSYSPMQDPNFHTMGQRPSYATLRMQPRPGLRPTGLVQNQPNQLRLQLQHRLQAQQNRQPLMNQISNVSNVNLTLRPGVPTQAPINAQMLAQRQREILNQHLRQRQMHQQQQVQQRTLMMRGQGLNMTPSMVAPSGIPATMSNPRIPQANAQQFPFPPNYGISQQPDPGFTGATTPQSPLMSPRMAHTQSPMMQQSQANPAYQAPSDINGWAQGNMGGNSMFSQQSPPHFGQQANTSMYSNNMNINVSMATNTGGMSSMNQMTGQISMTSVTSVPTSGLSSMGPEQVNDPALRGGNLFPNQLPGMDMIKQEGDTTRKYC-"
special_seq_name = "HEY1_NCOA2"
fodb_puncta.loc[
(fodb_puncta['FO_Name']==special_seq_name) &
(fodb_puncta['AAseq']==special_seq), 'AAseq'
] = special_seq.replace('-','')
fodb_puncta_sequences = fodb_puncta['AAseq'].unique().tolist()
benchmark_sequences = dict(zip(fodb_puncta_sequences, ['Puncta']*len(fodb_puncta_sequences)))
log_update(f"\tRead FOdb puncta data and isolated {len(benchmark_sequences)} sequences for puncta benchmark")
# Biological discovery benchmark
benchmark_sequences2 = fuson_db.loc[
(fuson_db['fusiongenes'].str.contains('EWSR1::FLI1')) |
(fuson_db['fusiongenes'].str.contains('PAX3::FOXO1')) |
(fuson_db['fusiongenes'].str.contains('BCR::ABL1')) |
(fuson_db['fusiongenes'].str.contains('EML4::ALK'))
]['aa_seq'].unique().tolist()
benchmark_sequences2 = dict(zip(benchmark_sequences2, ['Biological Discovery']*len(benchmark_sequences2)))
log_update(f"\tIsolated all EWSR1::FLI1, PAX3::FOXO1, BCR::ABL1, and EML4::ALK sequences ({len(benchmark_sequences2)} total) for biological benchmarks...")
for k, v in benchmark_sequences2.items():
if k in benchmark_sequences:
benchmark_sequences[k] = benchmark_sequences[k] + ',' + v
else:
benchmark_sequences[k] = v
log_update(f"\tTotal unique benchmark sequences: {len(benchmark_sequences)}")
# Add benchmark column
log_update("\tAdding benchmark column...")
fuson_db['benchmark'] = fuson_db['aa_seq'].apply(lambda x: benchmark_sequences[x] if x in benchmark_sequences else np.nan)
# Save fuson_db
log_update("\nWriting final database to fuson_db.csv...")
fuson_db.to_csv('fuson_db.csv', index=False)
log_update("Cleaning complete.")
# Assemble head tail queries for UniProt
assemble_uniprot_query()
# Do the head tail mappings
head_tail_mappings(fuson_db)
if __name__ == '__main__':
main()