Whisper Small Five - Chee Li

This model is a fine-tuned version of openai/whisper-base on the Google Fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4348
  • Wer: 21.6569

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 850
  • training_steps: 8000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.3047 1.0560 1000 0.4050 22.7955
0.1771 2.1119 2000 0.3811 21.0509
0.1176 3.1679 3000 0.3864 21.3429
0.0852 4.2239 4000 0.3962 20.7720
0.0443 5.2798 5000 0.4100 21.4523
0.0265 6.3358 6000 0.4234 21.3823
0.0254 7.3918 7000 0.4310 21.7783
0.0188 8.4477 8000 0.4348 21.6569

Framework versions

  • Transformers 4.43.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
13
Safetensors
Model size
72.6M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for CheeLi03/whisper-5b

Finetuned
(380)
this model